As you go down the Group 2 (alkaline earth elements) elements they become more and more reactive.
i.e. H2O+Ca=Ca(OH)2+H2 there is more hydrogen (g) created and at a faster pace than H2O+Mg=Mg(OH)2+H2.
The reactivity is increasing goinng down in the group.
Reactivity generally increases from top to bottom in Group 1 elements due to the decrease in ionization energy. In contrast, Group 2 elements do not show the same reactivity trend as Group 1; reactivity generally increases from top to bottom due to the decreasing ionization energy, but other factors such as atomic size and electron shielding can also influence the reactivity patterns in Group 2.
all the elements of group 18 are Nobel gases. They are very very less reactive.
The reactivity of group 17 elements differ as you move down the periods. Group 17 elements are missing 1 electron from their valance shell making them highly votile and reactive.I'll try not to make this confusing:1. As elements get bigger, they have a higher level of reactivity. (More "pull" needed from protons in the nucleus in order to keep valance shell electrons in orbit).2. As you move from left to right in the groups, you have a higher level of reactivity.3. Groups 1 and 17 have the highest levels of reactivity (except hydrogen in group 1) because they are away by only 1 valence electron.
The reactivity of Group 1 elements increases with increasing atomic number. This is due to the fact that as atomic number increases, the outermost electron is farther away from the nucleus, making it easier to lose and therefore more reactive. Additionally, the size of the atom increases down the group, leading to a weaker attraction between the outermost electron and the nucleus, further enhancing reactivity.
The list would include elements such as fluorine, chlorine, bromine, iodine, and astatine. These elements belong to the halogen group and exhibit decreasing chemical reactivity from top to bottom due to increasing atomic size and decreasing electronegativity.
The reactivity is increasing goinng down in the group.
Reactivity generally increases from top to bottom in Group 1 elements due to the decrease in ionization energy. In contrast, Group 2 elements do not show the same reactivity trend as Group 1; reactivity generally increases from top to bottom due to the decreasing ionization energy, but other factors such as atomic size and electron shielding can also influence the reactivity patterns in Group 2.
The reactivity increase down in the group.
As you move down Group 17 (halogens) from top to bottom, the reactivity decreases. This is due to the increasing atomic size and electron shielding, making it more difficult for the outer electron to be gained by the lower elements in the group, thus decreasing their reactivity.
all the elements of group 18 are Nobel gases. They are very very less reactive.
it is less common
The reactivity of group 17 elements differ as you move down the periods. Group 17 elements are missing 1 electron from their valance shell making them highly votile and reactive.I'll try not to make this confusing:1. As elements get bigger, they have a higher level of reactivity. (More "pull" needed from protons in the nucleus in order to keep valance shell electrons in orbit).2. As you move from left to right in the groups, you have a higher level of reactivity.3. Groups 1 and 17 have the highest levels of reactivity (except hydrogen in group 1) because they are away by only 1 valence electron.
Down a group, the atomic number generally increases, size increases, ionization energy decreases, reactivity increases.
they do becaused they want to do it
The reactivity of Group 1 elements increases with increasing atomic number. This is due to the fact that as atomic number increases, the outermost electron is farther away from the nucleus, making it easier to lose and therefore more reactive. Additionally, the size of the atom increases down the group, leading to a weaker attraction between the outermost electron and the nucleus, further enhancing reactivity.
The trend in reactivity of Group 7 elements (halogens) is opposite to that of Group 1 elements (alkali metals) due to their differing electron configurations and tendencies to gain or lose electrons. Group 1 elements have one electron in their outer shell and readily lose it to achieve a stable electron configuration, making them highly reactive. In contrast, Group 7 elements have seven electrons in their outer shell and tend to gain an electron to complete their octet, which makes them more reactive as you move up the group. Therefore, while reactivity increases down Group 1, it increases up Group 7.