The basic difference is that in radioactive decay, an unstable isotope spontaneously undergoes a nuclear change. In nuclear fission, a fissionable isotope absorbs a neutron, becomes unstable, and then fissions by breaking into a couple of pieces and releasing one or more neutrons plus some energy. Nuclear fission is usually thought of as intentionally caused.
Note: It is possible for a fissionable isotope to spontaneously fission without capturing a neutron. This is not the usual mode of "breakdown" of the isotope, but it is possible in a small number of cases.
Links to the relevant Wikipedia articles are provided.
Nuclear fusion and nuclear fission are processes that involve nuclear reactions but are not examples of radioactive decay. Chemical reactions, such as burning wood, do not involve nuclear processes and are also not examples of radioactive decay.
Nuclear fission is not a common form of natural radioactive decay. Nuclear fission occurs when a heavy atomic nucleus splits into smaller nuclei, releasing energy in the process, but it is primarily associated with artificial processes such as nuclear power generation or nuclear weapons.
Splitting of atomic nuclei, also known as nuclear fission, is a nuclear reaction in which the nucleus of an atom is split into smaller parts. This process releases a significant amount of energy in the form of heat and radiation. Nuclear fission is used in nuclear power plants and nuclear weapons.
It would become an atom of a different element. This can only happen during radioactive decay, nuclear fusion, or nuclear fission.
The process where an element of matter is changed into a completely different element is nuclear fission. In nuclear fission, a heavy nucleus splits into lighter nuclei, resulting in the formation of different elements. Nuclear fusion is the process where two light nuclei combine to form a heavier nucleus, while alpha decay is a type of radioactive decay where an alpha particle is emitted from a nucleus.
- radioactive decay - nuclear fission - nuclear reactions
Nuclear fusion and nuclear fission are processes that involve nuclear reactions but are not examples of radioactive decay. Chemical reactions, such as burning wood, do not involve nuclear processes and are also not examples of radioactive decay.
Nuclear reactions, radioactive decay, natural fission
Nuclear fission is not a common form of natural radioactive decay. Nuclear fission occurs when a heavy atomic nucleus splits into smaller nuclei, releasing energy in the process, but it is primarily associated with artificial processes such as nuclear power generation or nuclear weapons.
Splitting of atomic nuclei, also known as nuclear fission, is a nuclear reaction in which the nucleus of an atom is split into smaller parts. This process releases a significant amount of energy in the form of heat and radiation. Nuclear fission is used in nuclear power plants and nuclear weapons.
If atoms are radioactive, they can emit alpha,beta, or gamma radiation. The energy of the particles or rays emitted depends on the exact isotopes concerned, and varies widely from one to another.
It would become an atom of a different element. This can only happen during radioactive decay, nuclear fusion, or nuclear fission.
The process where an element of matter is changed into a completely different element is nuclear fission. In nuclear fission, a heavy nucleus splits into lighter nuclei, resulting in the formation of different elements. Nuclear fusion is the process where two light nuclei combine to form a heavier nucleus, while alpha decay is a type of radioactive decay where an alpha particle is emitted from a nucleus.
Yes, strontium can undergo radioactive decay. One common isotope of strontium, strontium-90, is a radioactive isotope that decays through beta decay. It is a byproduct of nuclear fission and can be harmful to living organisms due to its radioactive nature.
Gamma radiation comes from the nuclei of atoms, usually as a result of nuclear reactions or radioactive decay. It is the most energetic form of electromagnetic radiation and can be produced by processes such as nuclear fission, nuclear fusion, or from certain types of radioactive decay.
Nuclear energy is released during: fission radioactive decay man-induced splitting of atoms
Yes, but only if the nuclear disintegration is alpha decay. Alpha decay is only one mode of radioactive decay, and in alpha decay, a helium-4 nucleus (the alpha particle) will appear. Beta decay (two types) and spontaneous fission are also modes of radioactive decay, and different particles appear in those events. Links are provided below to Related questions that will help you sort this out.