The metal will rust over time but the mass of the container as a whole. The law of conservation of mass is not violated.
Why should it violate it? Atoms are simply rearranged. No new atoms are created, no atoms are destroyed. The rust will have more mass than the original iron (or whatever metal is rusting), but that's because oxygen atoms from the atmosphere are added. Add: This does not violate the law of conservation of mass, because the mass of the rust is the combined mass of the iron and the oxygen in the atmosphere that reacted to form the rust.
The Rock Cycle and the Law of Conservation of Mass are related because the processes involved in the rock cycle (such as weathering, erosion, and deposition) do not create or destroy matter, they only transform it from one form to another. This is consistent with the Law of Conservation of Mass, which states that matter is neither created nor destroyed in a chemical reaction.
The law that states mass cannot be created or destroyed in chemical or physical changes is the Law of Conservation of Mass, also known as the Principle of Mass Conservation. This law implies that in a closed system, the total mass remains constant before and after any chemical or physical process, even if the substances undergo a change in form or state.
The Law of conservation of Energy applies to mass as mass is a form of energy, E=mc2.
Law of Conservation of mass(atomic mass). As mass can be considered relative to energy, therefore Law of Conservation is also correct but Law of conservation of mass is is much more accurate because here mass is a much more accurate term that is required here. Here, since, we are balancing molecules, then we require atomic or molecular mass.
no Nothing violates that law.
It isn't closely related. Newton's Third Law is more closely related to conservation of MOMENTUM.
Why should it violate it? Atoms are simply rearranged. No new atoms are created, no atoms are destroyed. The rust will have more mass than the original iron (or whatever metal is rusting), but that's because oxygen atoms from the atmosphere are added. Add: This does not violate the law of conservation of mass, because the mass of the rust is the combined mass of the iron and the oxygen in the atmosphere that reacted to form the rust.
The law of conservation of mass, which states that in a closed system, mass is neither created nor destroyed, it can only change form. This means that in a chemical reaction that takes place in a closed system, the mass of the reactants equals the mass of the products.
The Rock Cycle and the Law of Conservation of Mass are related because the processes involved in the rock cycle (such as weathering, erosion, and deposition) do not create or destroy matter, they only transform it from one form to another. This is consistent with the Law of Conservation of Mass, which states that matter is neither created nor destroyed in a chemical reaction.
The law of conservation of mass states that mass is neither created nor destroyed in a chemical reaction. Stoichiometry is the calculation of reactants and products in chemical reactions based on the law of conservation of mass. It helps determine the quantitative relationships between substances involved in a chemical reaction.
The law that states mass cannot be created or destroyed in chemical or physical changes is the Law of Conservation of Mass, also known as the Principle of Mass Conservation. This law implies that in a closed system, the total mass remains constant before and after any chemical or physical process, even if the substances undergo a change in form or state.
The Law of conservation of Energy applies to mass as mass is a form of energy, E=mc2.
it conserves mass
Law of Conservation of mass(atomic mass). As mass can be considered relative to energy, therefore Law of Conservation is also correct but Law of conservation of mass is is much more accurate because here mass is a much more accurate term that is required here. Here, since, we are balancing molecules, then we require atomic or molecular mass.
The law that states that mass can neither be created nor destroyed in a chemical reaction is the Law of Conservation of Mass, also known as the Law of Mass Conservation. This principle was first formulated by Antoine Lavoisier in the late 18th century and is a fundamental concept in chemistry.
The Law of Conservation of Mass is the concept that mass cannot be created or destroyed, it simply changes form.