The rule for the interaction between the magnetic poles is similar to the interaction between the electrical charges in terms of the attraction and repulsion. In both cases the unlike poles attract while the like poles repel.
The force exerted by a magnet on a metal object is known as magnetic force, which arises from the interaction of the magnet's magnetic field with the magnetic properties of the metal. This force can attract or repel the object, depending on the nature of the metal and the orientation of the magnetic field. The strength of the magnetic force depends on factors such as the distance between the magnet and the object, the strength of the magnet, and the magnetic properties of the material being attracted.
magnetic field is a imaginary area around a manetic material where other magnetic subestences experience some force but flux is the imaginary lines of force that arise from magnet which indicate direction of force around it.
When a current-carrying conductor is placed in a magnetic field, a force is exerted on the conductor due to the interaction between the magnetic field and the current. This force is known as the magnetic Lorentz force and its direction is perpendicular to both the magnetic field and the current flow. The magnitude of the force depends on the strength of the magnetic field, the current flowing through the conductor, and the length of the conductor exposed to the magnetic field.
Magnetic field strength (H) is defined as the magnetomotive force per unit length, and is expressed in amperes per metre (often spoken as 'ampere turns per metre') in SI. An older, and far more descriptive term, is 'magnetomotive force gradient'.The 'closeness' or intensity of a magnetic field's flux lines, on the other hand is termed magnetic flux density(B), expressed in teslas in SI.There is a complex relationship between magnetic field strength and flux density, because of a property exhibited by ferromagnetic materials, called 'hysteresis'. In general, as the magnetic field strength applied to a sample of unmagnetised ferromagnetic material increases, the resulting flux density also increases (but not linearly) until saturation is reached, at which point any further increase in magnetic field strength will have no effect whatsoever on the flux density. If the magnetic field strength is then reduced, the flux density will also reduce (again, not linearly), but when the magnetic field strength reaches zero amperes, a certain amount of flux density remains.So to answer your question, you really need to study what's known as the B-H or magnetising curve for a sample of ferromagnetic material -this will show you exactly what the relationship between magnetic field strength and flux density for any give ferromagnetic material.
As two magnets get further apart, the strength of the magnetic force between them decreases. This relationship follows an inverse square law, which means that the force of attraction or repulsion diminishes rapidly with distance.
Magnetic force is the force exerted on a charged particle moving through a magnetic field. The strength and direction of the force depend on the charge of the particle, its velocity, and the strength and orientation of the magnetic field.
A magnetic force is the exertion of a force on a magnetic object due to the presence of a magnetic field. The strength and direction of the magnetic force depend on the strength and orientation of the magnetic field. In essence, a magnetic field produces the magnetic force that acts on magnetic objects within its influence.
The force between like magnetic poles is determined by the strength of the magnetic poles and the distance between them. The force decreases as the distance between the poles increases.
Magnetic flux through a loop is just a measurement of the strength of the magnetic field passing through the loop, and since magnetic field strength is directly related to magnetic force, magnetic force is directly related to the magnetic flux passing through the loop.
The factors that affect the magnitude of magnetic force include the strength of the magnetic field, the charge of the moving particle or current-carrying wire, and the angle between the magnetic field and the direction of motion of the particle. The distance between the magnet and the object also affects the strength of the magnetic force.
Magnetic force is inversely proportional to the square of the distance from the magnet which generates it.
The strength of the magnetic force decreases as the distance between the magnets increases. This relationship follows an inverse-square law, meaning that doubling the distance between two magnets will result in the magnetic force becoming one-fourth as strong. Therefore, as distance increases, the magnetic force weakens.
The distance between the magnets: The force of magnets decreases as the distance between them increases. The size or strength of the magnets: Stronger magnets will have a larger magnetic force between them. The orientation of the magnets: The force between magnets is strongest when their poles are aligned and weakest when they are opposite. The magnetic properties of the materials: Different materials have varying magnetic permeabilities, affecting the strength of the magnetic force.
The force of pushing or pulling between magnetic poles is known as the magnetic force. This force is caused by the interaction of the magnetic fields of the two poles and acts in a direction determined by the orientation of the poles (attraction between opposite poles and repulsion between like poles). The strength of the force depends on the distance between the poles and the strength of the magnets.
Factors that affect the strength of magnetic force include the distance between the magnets, the material the magnets are made of, the size and shape of the magnets, and the orientation of the magnets relative to each other. Additionally, the presence of any magnetic shielding or intervening materials can also influence the strength of the magnetic force.
Magnetic force is the force experienced by a magnetic object when placed in a magnetic field. The strength and direction of the force depend on the characteristics of the object and the field. The magnetic field is the region around a magnetic object or current-carrying conductor where another magnetic object experiences a magnetic force.
The magnetic force of attraction between two magnets decreases with distance. As the distance between the magnets increases, the strength of the magnetic force weakens. This relationship follows an inverse square law, meaning that the force decreases exponentially as the distance between the magnets increases.