by the bubbles that are produces the closer the faster the bubles move
Light intensity directly affects the rate of photosynthesis. As light intensity increases, so does the rate of photosynthesis, up to a certain point where the rate levels off or decreases. Plants require a certain amount of light to carry out photosynthesis efficiently.
Temperature affects the rate. Because of it is using enzymes.
Low light intensity lowers the rate of photosynthesis, Normal sunlight is good for a normal rate of photosynthesis, Very high intensity bleaches (destruction) the chlorophyll
The independent variable in the experiment is the intensity of light exposure. This is the factor that the student is manipulating to observe how it affects the rate of photosynthesis in the algae. By changing the light intensity, the student can measure the resulting changes in the photosynthetic rate.
The angle and intensity of sunlight affect the rate of photosynthesis in plants. Plants positioned in direct sunlight receive higher light intensity and thus have a higher rate of photosynthesis compared to shaded plants. The position of the sun in the sky also determines the light angle and intensity that plants receive, influencing their photosynthetic rate.
Light intensity directly affects the rate of photosynthesis. As light intensity increases, so does the rate of photosynthesis, up to a certain point where the rate levels off or decreases. Plants require a certain amount of light to carry out photosynthesis efficiently.
By changing the light intensity the rate of photosynthesis will either increase or decrease because it is one of the factors that affects photosynthesis. If you increase the light intensity the rate increases but if you decrease the light intensity the rate decreases.
Higher light intensity increases the rate of photosynthesis and vice versa.more intense light means more energy in the light, so the chloroplasts get more energy from light, making photosynthesis go faster
Temperature affects the rate. Because of it is using enzymes.
The relationship between light intensity and photosynthetic rate is that if the intensity of the light is high then the rate of photosynthesis will increase. However the rate of photosynthesis will only increase to an extent after intensity of light reaches a certain point photosynthesis rate will stay still.
Low light intensity lowers the rate of photosynthesis, Normal sunlight is good for a normal rate of photosynthesis, Very high intensity bleaches (destruction) the chlorophyll
The independent variable in the experiment is the intensity of light exposure. This is the factor that the student is manipulating to observe how it affects the rate of photosynthesis in the algae. By changing the light intensity, the student can measure the resulting changes in the photosynthetic rate.
The angle and intensity of sunlight affect the rate of photosynthesis in plants. Plants positioned in direct sunlight receive higher light intensity and thus have a higher rate of photosynthesis compared to shaded plants. The position of the sun in the sky also determines the light angle and intensity that plants receive, influencing their photosynthetic rate.
No, that is not true and increasing light intensity increases the photosynthetic rate, to a point. The saturation point is reached when the reactions in the reaction center have reached top speed and any more light intensity will not increase the rate of photosynthesis.
The rate of photosynthesis is influenced by light intensity, which can be calculated by measuring the number of oxygen bubbles produced by a plant in a set amount of time under different light intensities. By increasing or decreasing the light intensity and observing the corresponding rate of oxygen bubble production, you can determine the impact of light intensity on photosynthesis.
It directly increases along with the growth in intensity of the light
A good hypothesis for the question "How does light intensity affect the rate of photosynthesis?" could be: "As light intensity increases, the rate of photosynthesis will also increase, up to a certain point, after which the rate will plateau or decline due to potential factors like chloroplast saturation or damage." This hypothesis is based on the understanding that light is a key factor in photosynthesis, and there are optimal levels of light intensity for maximum efficiency.