no H2O molecules are produced:)
1
Glycolysis only produces ATP. GTP is produced during the Citric Acid Cycle (Krebs Cycle).
Water molecules are not directly produced in the Krebs cycle. However, water is a byproduct of the overall process of cellular respiration, which includes the Krebs cycle along with glycolysis and the electron transport chain.
The glycolysis process produces a net of 2 ATP molecules, while the Krebs cycle produces 2 ATP molecules directly. So, combining these, a total of 4 ATP molecules are produced from one molecule of glucose.
The Krebs cycle produces 1 ATP molecule per cycle through substrate-level phosphorylation. Since the cycle completes twice for each glucose molecule entering glycolysis, a total of 2 ATP molecules are generated from the Krebs cycle per glucose molecule metabolized.
1
4
In a complete Krebs Cycle, 24 ATP are produced. Every glucose molecule produces 2 ATP, and there are 12 glucose molecules.
6
two :]
Glycolysis only produces ATP. GTP is produced during the Citric Acid Cycle (Krebs Cycle).
Water molecules are not directly produced in the Krebs cycle. However, water is a byproduct of the overall process of cellular respiration, which includes the Krebs cycle along with glycolysis and the electron transport chain.
The glycolysis process produces a net of 2 ATP molecules, while the Krebs cycle produces 2 ATP molecules directly. So, combining these, a total of 4 ATP molecules are produced from one molecule of glucose.
One molecule of glucose is broken down into two molecules of pyruvate during glycolysis. Each pyruvate molecule then enters the Krebs cycle and is fully oxidized to produce three molecules of carbon dioxide. Therefore, in total, six molecules of carbon dioxide are produced when the Krebs cycle operates once.
1 This isn't even technically true. One GTP molecule is produced which produces one ATP molecule. The Krebs cycle produces tons of energy, but not in the form of ATP directly. The Krebs cycle (or TCA cycle) results in reducing potential molecules; NADH and FADH2 specifically. These molecules are shuttled through the electron transport chain to produce energy. 3 NADH molecules and 1 FADH molecule is produced for every turn of the Krebs cycle. One molecule of glucose will result in two turns of the Krebs cycle because two pyruvate molecules are the result of one glucose molecule (pyruvate if fed into the Krebs cycle after it is converted into acetyl-CoA). So, one glucose molecule = 6 NADH and 2 FADH molecules (and 2 GTP molecules) In the electron transport chain 1 NADH molecule = 3 ATP. 1 FADH2 molecule = 2 ATP. From here the math is pretty straight forward 6 NADH molecules = 18 ATP 2 FADH molecules = 4 ATP 2 GTP molecules = 2 ATP If you ever read something saying the number of ATP molecules produced from a glucose molecule is between 30-38 ATP do not be confused. This is simply the number for: glycolysis, TCA cycle, and oxidative phosphorylation (electron transport chain) added together. We only get about 30 ATP molecules out of it though because the process is not perfect. Source: Biomed degree.
The Krebs cycle generates 1 ATP molecule per turn through substrate-level phosphorylation. Due to the cycle occurring twice per glucose molecule, a total of 2 ATP molecules are produced per glucose molecule entering the cycle.
The Krebs cycle produces 1 ATP molecule per cycle through substrate-level phosphorylation. Since the cycle completes twice for each glucose molecule entering glycolysis, a total of 2 ATP molecules are generated from the Krebs cycle per glucose molecule metabolized.