To react completely with one molecule of methane (CH4), two molecules of oxygen (O2) are needed. This is because the balanced chemical equation for the combustion of methane is CH4 + 2O2 → CO2 + 2H2O. Each molecule of methane requires two molecules of oxygen to form carbon dioxide and water.
16.0 grams of methane (CH4) is equivalent to about 0.92 moles of methane, since the molar mass of methane is approximately 16.04 g/mol. In terms of molecules, this would be approximately 5.53 x 10^22 molecules of methane.
At STP (standard temperature and pressure), one mole of any gas occupies 22.4 liters. This means that 144 liters of methane gas contain 144/22.4 moles of CH4. Using the molar mass of CH4 (16 g/mol), you can calculate the mass of methane gas in grams.
There are many, but the most common is methane (CH4).
The chemical symbol for methane is CH4.
At STP (standard temperature and pressure), 1 mole of any gas occupies 22.4 liters. So, in 30 liters of methane, there would be 30/22.4 = 1.3393 moles. One mole of methane contains 6.022 x 10^23 molecules, therefore 30 liters of methane at STP would contain 1.3393 * 6.022 x 10^23 = 8.07 x 10^23 molecules.
It represent a one molecule.CH4 stands for Methane
The balanced equation for the combustion of CH4 is CH4 + 2O2 ==> CO2 + 2H2O4 molecules of CH4 will produce 4 molecules of CO2 and 8 molecules of H2O
To react completely with one molecule of methane (CH4), two molecules of oxygen (O2) are needed. This is because the balanced chemical equation for the combustion of methane is CH4 + 2O2 → CO2 + 2H2O. Each molecule of methane requires two molecules of oxygen to form carbon dioxide and water.
16.0 grams of methane (CH4) is equivalent to about 0.92 moles of methane, since the molar mass of methane is approximately 16.04 g/mol. In terms of molecules, this would be approximately 5.53 x 10^22 molecules of methane.
At STP (standard temperature and pressure), one mole of any gas occupies 22.4 liters. This means that 144 liters of methane gas contain 144/22.4 moles of CH4. Using the molar mass of CH4 (16 g/mol), you can calculate the mass of methane gas in grams.
The meaning of 2 is two methane molecules.
There are many, but the most common is methane (CH4).
The balanced equation for the reaction between hydrogen gas (H2) and carbon disulfide (CS2) to produce methane (CH4) is: 4H2 + CS2 → 4H2S + CH4. This means that for every 4 moles of hydrogen gas, 1 mole of methane is produced. Since 1 mole of any gas at STP occupies 22.4 liters, you would need 5.6 liters of hydrogen gas to produce 2.5 liters of methane.
At STP (standard temperature and pressure), 1 mole of any gas occupies 22.4 liters. Therefore, 5.6 liters of methane is equal to 5.6/22.4 = 0.25 moles of methane.
Yes; the reaction is: CH4 + 2 O2 = CO2 + 2 H2O
The chemical symbol for methane is CH4.