6,022140857.1023 molecules---------------------------------------------1 mole2.1022 molecules--------------------------------------------------------------x molex = 0,033 moles
One mole is 6.02 × 1023 molecules. So 2 molecules out of that 6.02 × 1023 would be 2/(6.02 × 1023) or 3.32 ×10-24 moles.
To calculate the number of molecules, first convert 450 g of water to moles (8 moles). With a 1.3 m solution, there are 1.3 moles of sucrose for every 1 liter of water. So, you will need 10.4 moles of sucrose for 8 moles of water. Finally, use Avogadro's number to convert moles to molecules, giving you approximately 6.23 x 10^23 molecules of sucrose.
For every mole of C3H8 that reacts, 4 moles of water are formed. Therefore, 5.0 moles of C3H8 will form 5.0 x 4 = 20 moles of water. To convert moles to molecules, you would then multiply by Avogadro's number (6.022 x 10^23 molecules/mol). So, 20 moles of water would equal 20 x 6.022 x 10^23 = 1.2044 x 10^25 molecules of water.
There are approximately 1.204 x 10^24 molecules in 2 moles of water. This is because 1 mole of a substance contains 6.022 x 10^23 molecules. Therefore, 2 moles would contain twice that number.
6,022140857.1023 molecules---------------------------------------------1 mole2.1022 molecules--------------------------------------------------------------x molex = 0,033 moles
A mole of water contains avagadro's number of molecules of water. Therefore 5.65 moles contains 5.65 * 6.022x1023 molecules of water which equals 3.40243x1024 molecules of water.
One mole is 6.02 × 1023 molecules. So 2 molecules out of that 6.02 × 1023 would be 2/(6.02 × 1023) or 3.32 ×10-24 moles.
A 50g sample of H2O contains approximately 2.78 x 10^24 molecules of water. This is calculated by first converting the mass to moles, then using Avogadro's number to determine the number of molecules present in that many moles of water.
for each mole of anything there is 6.022x10^23 molecules. Therefore for 5 moles of water there is 5 x 6.022x10^23 = 3.011x10^24 molecules of water
A number of atoms/molecules in a given number of moles is regardless of the substance unless it deals with stoicheometry. One mole represents a number of Avogadro's constant, approximately 6.022 x 10^23. Therefore there are 1.91 x 10^25 molecules of water in 31.8 moles.
To calculate the number of molecules, first convert 450 g of water to moles (8 moles). With a 1.3 m solution, there are 1.3 moles of sucrose for every 1 liter of water. So, you will need 10.4 moles of sucrose for 8 moles of water. Finally, use Avogadro's number to convert moles to molecules, giving you approximately 6.23 x 10^23 molecules of sucrose.
There are 1.5 moles of water molecules in a 27 gram sample of water. This is calculated by dividing the mass of the sample (27 grams) by the molar mass of water (18 grams/mol).
For every mole of C3H8 that reacts, 4 moles of water are formed. Therefore, 5.0 moles of C3H8 will form 5.0 x 4 = 20 moles of water. To convert moles to molecules, you would then multiply by Avogadro's number (6.022 x 10^23 molecules/mol). So, 20 moles of water would equal 20 x 6.022 x 10^23 = 1.2044 x 10^25 molecules of water.
There are approximately 1.204 x 10^24 molecules in 2 moles of water. This is because 1 mole of a substance contains 6.022 x 10^23 molecules. Therefore, 2 moles would contain twice that number.
4 moles of oxygen atoms are present in 4 moles of H2O
The value is 1,328.10e-3 moles.