8,75 moles of oxygen are needed.
0. Hydrogen doesn't "reackt" to form Nitrogen Monoxide.
16,875 moles of oxygen are needed.
0,5 moles Cl-
1 mole
8,75 moles of oxygen are needed.
The balanced chemical equation for the reaction between hydrogen and oxygen is: 2H2 + O2 -> 2H2O This equation shows that 1 mole of O2 reacts with 2 moles of H2. So, to completely react with 6 moles of H2, you would need 3 moles of O2.
0. Hydrogen doesn't "reackt" to form Nitrogen Monoxide.
16,875 moles of oxygen are needed.
The balanced chemical equation for the reaction between oxygen (O2) and hydrogen sulfide (H2S) is: 2H2S + 3O2 -> 2SO2 + 2H2O From the equation, it is a 3:2 ratio of O2 to H2S. Therefore, if 2.3 moles of H2S are present, (2.3 moles H2S) * (3 moles O2 / 2 moles H2S) = 3.45 moles of O2 are needed.
For the reaction of propane (C3H8) with oxygen (O2), the balanced equation is: C3H8 + 5O2 -> 3CO2 + 4H2O. This means that 5 moles of O2 are required to react completely with 1 mole of propane (C3H8). Therefore, to react completely with 4 moles of propane, you would need 20 moles of O2.
0,5 moles Cl-
The balanced chemical equation for the reaction between ammonia (NH3) and oxygen (O2) is 4NH3 + 3O2 → 2N2 + 6H2O. From the equation, we can see that 3 moles of O2 are needed to react with 4 moles of NH3. This means the molar ratio of O2 to NH3 is 3:4. First, calculate the number of moles of NH3 in 200.0 g: 200.0 g NH3 / 17.03 g/mol NH3 = 11.75 moles NH3 Now, calculate the number of moles of O2 needed using the molar ratio: 11.75 moles NH3 * (3 moles O2 / 4 moles NH3) = 8.81 moles O2 Finally, convert moles of O2 to grams: 8.81 moles O2 * 32 g/mol O2 = 282.0 g O2.
The balanced equation shows that 2 moles of H2S react with 3 moles of O2. Therefore, to react completely with 2.3 moles of H2S, you would need (3/2) x 2.3 moles of O2 which is equal to 3.45 moles of O2.
1 mole
4 moles of oxygen atoms are present in 4 moles of H2O
The balanced equation is C3H8 + 5O2 ---> 3CO2 + 4H2O moles C3H8 = 23.7 g x 1 mol/44 g = 0.539 moles moles O2 needed = 5 x 0.539 moles = 2.695 moles O2 (it takes 5 moles O2 per mole C3H8) grams O2 needed = 2.695 moles x 32 g/mole = 86.2 grams O2 needed (3 sig figs)