It is believed to be 6.
A bromine atom has 7 half-filled orbitals: one in the 4s orbital, three in the 4p orbitals, and three in the 4d orbitals.
The orbital designation "4p 3s 2d 5f" is invalid because it does not follow the proper order of filling orbitals according to the Aufbau principle. The correct order is 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, and 7p.
The order of electron orbitals following the Aufbau principle is: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, and 7p. Electrons fill the orbitals in increasing energy levels.
Krypton has four electron shells and a total of 8 valence electrons. The electron configuration of krypton is [Ar] 3d¹⁰ 4s² 4p⁶, indicating that the outermost shell (n=4) contains 8 electrons in the 4s and 4p orbitals. This full outer shell makes krypton a noble gas, contributing to its chemical stability.
The second quantum number, also known as the azimuthal or angular momentum quantum number (l), describes the shape of an electron's orbital. For the 4p energy sublevel, the value of l is 1, as p orbitals correspond to l = 1. Therefore, for one of the electrons in the 4p sublevel of bromine, the second quantum number is 1.
the answer is 3
There are three 4p orbitals in an atom. Each orbital can hold up to 2 electrons with opposite spins.
apparently 8. according to another website. :)
A bromine atom has 7 half-filled orbitals: one in the 4s orbital, three in the 4p orbitals, and three in the 4d orbitals.
All p sublevels contain three orbitals, including the 4p sublevel.
Arsenic has three electrons occupying the three 4p orbitals in its valence shell. Hund's first rule tells us that they will each occupy separate orbitals before they start to pair up. So there are three half-filled orbitals in an arsenic atom.
16 orbitals in the 4th energy level. One s orbital, three p orbitals, five d orbitals, seven f orbitals Elements where the 4th principal energy level are filled are:- period 4 4s and 4p (starting with potassium) period 5 4d starting with Yttrium Lanthanides 4f starting with cerium
* Ground state electron configuration:[Ar].3d10.4s2.4p6 so...4s and 4p
The 4p sublevel can hold a maximum of 6 electrons. Each p orbital within the 4p sublevel can hold up to 2 electrons, and there are 3 p orbitals in the 4p sublevel (2 electrons per orbital * 3 orbitals = 6 electrons).
When the 3d orbitals are completely filled, the new electrons will enter the 4s orbital before filling the 3d orbitals. This is because the 4s orbital has a lower energy level than the 3d orbitals, making it the first choice for accommodating additional electrons.
zero - after the 4s orbitals are filled at Calcium, the 3d orbitals start to fill - not until Gallium do the 4p orbitals start to fill.
It is got 4 electrons in its outermost shell. The last two electrons fall in the 4p orbitals.