ty
Not always. In a chemical reaction, the process can be either endothermic or exothermic. Endothermic reactions absorb heat from the surroundings, while exothermic reactions release heat into the surroundings. The specific reaction will determine whether it is endothermic or exothermic.
No, evaporating is not always an exothermic reaction. Evaporation is the process of a liquid turning into a gas, and whether it is exothermic or endothermic depends on the specific conditions such as temperature and pressure.
It shows whether the reaction is exothermic or endothermic.
It shows whether the reaction is exothermic or endothermic.
The terms "endothermic" and "exothermic" refer to whether a chemical reaction absorbs or releases heat, respectively. In an endothermic reaction, heat is absorbed from the surroundings, while in an exothermic reaction, heat is released into the surroundings.
Not always. In a chemical reaction, the process can be either endothermic or exothermic. Endothermic reactions absorb heat from the surroundings, while exothermic reactions release heat into the surroundings. The specific reaction will determine whether it is endothermic or exothermic.
It depends on whether or not the chemical reaction is exothermic or endothermic. If exothermic, then yes, energy is released. If endothermic, then no, energy is absorbed, not released.
You can generally tell by changes in temperature, whether you have an exothermic reaction which produces heat, or an endothermic reaction which consumes heat.
A potential energy diagram of a chemical reaction illustrates the energy changes that occur as reactants are converted into products. It shows the activation energy required for the reaction to proceed and whether the overall process is exothermic or endothermic. The diagram can also reveal the stability of the reactants and products.
No, evaporating is not always an exothermic reaction. Evaporation is the process of a liquid turning into a gas, and whether it is exothermic or endothermic depends on the specific conditions such as temperature and pressure.
It shows whether the reaction is exothermic or endothermic.
It shows whether the reaction is exothermic or endothermic.
It shows whether the reaction is exothermic or endothermic.
Energy can either decrease or increase during a chemical reaction depending on whether it is an exothermic reaction (energy is released) or an endothermic reaction (energy is absorbed). In an exothermic reaction, energy is released in the form of heat, and in an endothermic reaction, energy is absorbed from the surroundings.
An endothermic reaction is one in which thermal energy, or heat, is absorbed. If heat is absorbed in the reaction process, it is endothermic. By monitoring the temperature of the reactants in a reaction, an observer could identify an endothermic reaction through observation of a decrease in the temperature.
Single replacement reactions can be either endothermic or exothermic, depending on the specific reaction. The energy change of the reaction will determine whether it is endothermic (absorbs heat) or exothermic (releases heat).
To determine if an equation is endothermic or exothermic, you can look at the overall energy change. If the reaction absorbs energy from the surroundings, it is endothermic. If the reaction releases energy into the surroundings, it is exothermic. This can be determined by comparing the energy of the reactants to the energy of the products.