answersLogoWhite

0

Yes, since the density of air is less than the density of water, a buoyant object in air is buoyant in water. In any body of water that is exposed to the air, in fact, said object would escape the body of water entirely.

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Natural Sciences

In a vacuum does an object have buoyant force?

No, an object in a vacuum does not experience buoyant force because there is no surrounding fluid to displace or exert an upward force on the object. Buoyant force is a phenomenon that occurs in fluids, such as air or water, and is responsible for objects floating or sinking.


This force acts upwards on objects suspended in water or air what is it?

It is called buoyant force. It is calculated by determining the volume of water displaced by the object, which is the volume of the object under water.The weight of this quantity of water is the buoyant force. It can also be calculated by knowing the depth of the object in the water, the pressure at that depth, and the area of the bottom of the object. Buoyant Force = Pressure * depth It can also be calculated by knowing the weight of the object. If an object is floating the water is supporting the object's weight. So the buoyant force = weight of object


An object with a mass of 4.6 kilograms and a volume of 0.0025 cubic meters is submerged in water. What is the buoyant force on the object?

The buoyant force is equal to the amount of water displaced. Multiply the volume of the object by the density of water - then convert that to a force (at about 9.8 newton/kilogram).


How does the buoyant force on a submerged object compare with the weight of water displaced?

The buoyant force on a submerged object is equal in magnitude to the weight of the water displaced by the object. This principle is known as Archimedes' Principle. It explains why objects float or sink in fluids.


What does pressure do for floating and sinking?

Pressure plays a role in determining whether an object floats or sinks by affecting the buoyant force acting on the object. If the pressure on an object is greater than the buoyant force, the object will sink. Conversely, if the pressure is less than the buoyant force, the object will float.

Related Questions

Air has a lower density then water If an object is buoyant in air is it buoyant in water?

No, an object that is buoyant in air may not necessarily be buoyant in water. Buoyancy is determined by the density of the fluid compared to the density of the object. Water is denser than air, so an object that may be buoyant in air due to its low density may be too dense to float in water.


What is the difference of an object weight in air and in water?

The difference in an object's weight in air and in water is due to the buoyant force acting on the object in water. In water, the object displaces an amount of water equal to its volume, resulting in an upward buoyant force that partially counteracts the object's weight. This buoyant force reduces the object's effective weight in water compared to in air.


How do you calculate the buoyant force when given the air weight of an object's weight when submerged?

To calculate the buoyant force acting on an object submerged in water, you can use the formula: Buoyant force = Weight of the water displaced = Weight of the object in air - Weight of the object in water. This formula considers that the buoyant force is equal to the weight of the water displaced by the object.


How do you calculate the weight of an object under water?

To calculate the weight of an object under water, you can use the equation: Weight (in water) = Weight (in air) - Buoyant force. The buoyant force is equal to the weight of the water displaced by the object. By subtracting the buoyant force from the weight in air, you can find the weight of the object in water.


Object Weights more in air water vacuum or hydrogen?

An object weighs less in air compared to its weight in vacuum or hydrogen, as air exerts a buoyant force on the object. The object weighs more in water than in air due to water's buoyant force. In a vacuum or hydrogen, where there is no buoyant force, the object's weight would be the same as its actual weight.


What is the relationship between buoyant force and weight in air when submerged in water?

There's no relationship between the weight of an object in air and the buoyantforce on it when it's in water.The buoyant force is equal to the weight of the water the object displaces,which depends directly on its volume.Two objects that have identical weight in air will experience radically differentbuoyant forces in water if their volumes are different.


When an object is in water is it heavier or lighter?

When an object is in water, it may appear lighter because of the buoyant force acting on it. The buoyant force counteracts the weight of the object, making it feel lighter in water compared to in air.


Explain how the buoyant force acting on an object placed in water can be measured?

The buoyant force acting on an object placed in water can be measured by finding the difference between the weight of the object in air and the apparent weight of the object when submerged in water. This difference is equal to the buoyant force acting on the object, which is also equivalent to the weight of the water displaced by the object. By measuring these weights, one can determine the buoyant force acting on the object.


Why an object has a different weight in air from its weight in water?

An object's weight in air differs from its weight in water due to the buoyant force exerted by the fluid. When submerged in water, the buoyant force acts upward against the weight of the object, effectively reducing its apparent weight. This phenomenon is described by Archimedes' principle, which states that the buoyant force is equal to the weight of the fluid displaced by the object. Consequently, while the object's mass remains constant, its weight appears less in water than in air.


In a vacuum does an object have buoyant force?

No, an object in a vacuum does not experience buoyant force because there is no surrounding fluid to displace or exert an upward force on the object. Buoyant force is a phenomenon that occurs in fluids, such as air or water, and is responsible for objects floating or sinking.


Does an object weigh more in water or in air?

An object will typically weigh less in water compared to in air, due to the buoyant force acting on it when submerged. This is because the water exerts an upward force on the object, partially offsetting its weight.


Explain why an object under water feels lighter when its in the air?

When an object is underwater, it displaces an amount of water equal to its weight. This buoyant force pushes the object upward, effectively reducing its weight. When the object is above the water, it is no longer displacing water, so the buoyant force is removed, making it feel heavier.