pacific
convergent
Composite volcanoes most often are found near subduction zones. They can be found at either oceanic-oceanic convergent plate boundaries, oceanic-continental plate boundaries, or continental-continental plate boundaries. They are especially prevalent in the Pacific Ring of Fire. A few composite volcanoes, however, have been found at divergent boundaries and away from plate boundaries at hot spots.
Volcanoes that form on converging plate boundaries are typically stratovolcanoes or composite volcanoes. These volcanoes are formed by the subduction of one tectonic plate beneath another, leading to the formation of a volcanic arc and explosive eruptions due to the melting of the subducted plate. Examples include the Cascade Range in the U.S. and the Andes in South America.
Underwater volcanoes and mountains can form at both convergent and divergent boundaries.
Most of the volcanoes at convergent boundaries are stratovolcanoes.
convergent
Composite volcanoes most often are found near subduction zones. They can be found at either oceanic-oceanic convergent plate boundaries, oceanic-continental plate boundaries, or continental-continental plate boundaries. They are especially prevalent in the Pacific Ring of Fire. A few composite volcanoes, however, have been found at divergent boundaries and away from plate boundaries at hot spots.
Volcanoes that form on converging plate boundaries are typically stratovolcanoes or composite volcanoes. These volcanoes are formed by the subduction of one tectonic plate beneath another, leading to the formation of a volcanic arc and explosive eruptions due to the melting of the subducted plate. Examples include the Cascade Range in the U.S. and the Andes in South America.
Volcanoes and earthquakes
Underwater volcanoes and mountains can form at both convergent and divergent boundaries.
Convergent and transform boundaries
Most of the volcanoes at convergent boundaries are stratovolcanoes.
Earthquakes and volcanoes are hazards typically associated with convergent boundaries where tectonic plates collide. Mountains can also form at convergent boundaries due to the collision of plates. Trenches are associated with subduction zones at convergent boundaries where one plate is forced beneath another. Mudslides are not directly related to convergent boundaries.
Plates do not cause volcanoes. Volcanoes generally form at the boundaries between plates. They form at convergent and divergent boundaries.
Vesuvius is associated with a convergent boundary between the African Plate and the Eurasian Plate.
Volcanoes are more common along convergent boundaries where two tectonic plates collide, causing subduction and the melting of rock. Divergent boundaries also have volcanoes, but they are typically less explosive and occur as a result of magma rising to fill the gap created by the moving plates.
At convergent boundaries some mantle material can melt and rise through the crust, forming volcanoes.