If a star's parallax is too small to measure, it means that the star is far from Earth. Parallax measurements are used to determine the distance of nearby stars by observing their apparent shift in position as Earth orbits the Sun. Stars with large parallaxes are closer to Earth, while stars with small or undetectable parallaxes are further away.
It means that its distance is farther than can be detected. For example, if the smallest angle that can be detected is 1/100 of an arc-second, it would mean that the star is farther than about 100 parsec.
No, if you can measure no parallax, the star is far away - further than a certain distance.
Spectroscopic parallax is generally less accurate than trigonometric parallax for measuring distances to nearby stars. Trigonometric parallax directly measures the star's slight apparent shift against background stars, providing a precise distance calculation. Spectroscopic parallax, on the other hand, relies on the star's spectral characteristics and assumptions about its intrinsic brightness, introducing uncertainties.
At larger distance, the parallax becomes smaller, and therefore harder to measure. Even the closest star (Toliman) has a parallax of less than one arc-second (1/3600 of a degree), which is difficult to measure. Stars that are farther away have a much smaller parallax.
It means that the distance is greater than a certain amount - depending on how precisely you can measure the parallax.
You can conclude that it is farther than a certain distance. How much this distance is depends, of course, on how accurately the parallax angle can be measured.
It means that the distance is greater than a certain amount - depending on how precisely you can measure the parallax.
At farther distances, the parallax becomes too small to measure accurately. At a distance of 1 parsec, a star would have a parallax of 1 second (1/3600 of a degree). (The closest star, Toliman, is a little farther than that.) At a distance of 100 parsecs, the parallax is only 1/100 of a second.
At larger distance, the parallax becomes smaller, and therefore harder to measure. Even the closest star (Toliman) has a parallax of less than one arc-second (1/3600 of a degree), which is difficult to measure. Stars that are farther away have a much smaller parallax.
If a star's parallax is too small to measure, it means that the star is far from Earth. Parallax measurements are used to determine the distance of nearby stars by observing their apparent shift in position as Earth orbits the Sun. Stars with large parallaxes are closer to Earth, while stars with small or undetectable parallaxes are further away.
a) A parallax was expected, according to theory.b) None was detected. The problem here is that even the closest star (apart from the Sun) are so far away that their parallax is less than one arc-second - i.e., less than 1/3600 of a degree, and therefore hard to measure.
It means that its distance is farther than can be detected. For example, if the smallest angle that can be detected is 1/100 of an arc-second, it would mean that the star is farther than about 100 parsec.
No, if you can measure no parallax, the star is far away - further than a certain distance.
Pressumably, they didn't have the high-precision devices required to measure those angles. You must consider that we are talking about extremely small angles - even the closest star has a parallax of less than one arc-second (1/3600 of a degree).
Spectroscopic parallax is generally less accurate than trigonometric parallax for measuring distances to nearby stars. Trigonometric parallax directly measures the star's slight apparent shift against background stars, providing a precise distance calculation. Spectroscopic parallax, on the other hand, relies on the star's spectral characteristics and assumptions about its intrinsic brightness, introducing uncertainties.
If by star system you mean more than one star but not a galaxy then Alpha Centauri is the closest star system