answersLogoWhite

0

What else can I help you with?

Continue Learning about Natural Sciences

If a star's parallax is too small to measure does that mean that it is close or far from Earth?

If a star's parallax is too small to measure, it means that the star is far from Earth. Parallax measurements are used to determine the distance of nearby stars by observing their apparent shift in position as Earth orbits the Sun. Stars with large parallaxes are closer to Earth, while stars with small or undetectable parallaxes are further away.


If a star's parallax angle is too small to meaure what can you conclude about the star distance form earth?

It means that its distance is farther than can be detected. For example, if the smallest angle that can be detected is 1/100 of an arc-second, it would mean that the star is farther than about 100 parsec.


Is a star with no measurable parallax is very close to Earth.?

No, if you can measure no parallax, the star is far away - further than a certain distance.


Is spectroscopic parallax is more accurate than trigonometric parallax for measuring nearby stars?

Spectroscopic parallax is generally less accurate than trigonometric parallax for measuring distances to nearby stars. Trigonometric parallax directly measures the star's slight apparent shift against background stars, providing a precise distance calculation. Spectroscopic parallax, on the other hand, relies on the star's spectral characteristics and assumptions about its intrinsic brightness, introducing uncertainties.


Why can't astronomers measure the parallax of a star that's a million light years away?

At larger distance, the parallax becomes smaller, and therefore harder to measure. Even the closest star (Toliman) has a parallax of less than one arc-second (1/3600 of a degree), which is difficult to measure. Stars that are farther away have a much smaller parallax.

Related Questions

If a star's parallax angle is too small to measure what can you conclude about the star's distance from earth?

It means that the distance is greater than a certain amount - depending on how precisely you can measure the parallax.


If a star's parallax angle is too small to measure what can you conclude about the stars distance from earth?

You can conclude that it is farther than a certain distance. How much this distance is depends, of course, on how accurately the parallax angle can be measured.


If a star's parallax angle is too small to measure what can you conclude about the star's distance from the earth?

It means that the distance is greater than a certain amount - depending on how precisely you can measure the parallax.


Why can parallax only be used to measure distance to star that are relatively close to earth?

At farther distances, the parallax becomes too small to measure accurately. At a distance of 1 parsec, a star would have a parallax of 1 second (1/3600 of a degree). (The closest star, Toliman, is a little farther than that.) At a distance of 100 parsecs, the parallax is only 1/100 of a second.


Considering that the more distant an object is the smaller the angle it will make why would parallax measurements be better suited for stars than for galaxies?

At larger distance, the parallax becomes smaller, and therefore harder to measure. Even the closest star (Toliman) has a parallax of less than one arc-second (1/3600 of a degree), which is difficult to measure. Stars that are farther away have a much smaller parallax.


If a star's parallax is too small to measure does that mean that it is close or far from Earth?

If a star's parallax is too small to measure, it means that the star is far from Earth. Parallax measurements are used to determine the distance of nearby stars by observing their apparent shift in position as Earth orbits the Sun. Stars with large parallaxes are closer to Earth, while stars with small or undetectable parallaxes are further away.


Why was parallax a problem in proving the heliocentric model?

a) A parallax was expected, according to theory.b) None was detected. The problem here is that even the closest star (apart from the Sun) are so far away that their parallax is less than one arc-second - i.e., less than 1/3600 of a degree, and therefore hard to measure.


If a star's parallax angle is too small to meaure what can you conclude about the star distance form earth?

It means that its distance is farther than can be detected. For example, if the smallest angle that can be detected is 1/100 of an arc-second, it would mean that the star is farther than about 100 parsec.


Is a star with no measurable parallax is very close to Earth.?

No, if you can measure no parallax, the star is far away - further than a certain distance.


Why were early astronomers unable to detect stellar parallax?

Pressumably, they didn't have the high-precision devices required to measure those angles. You must consider that we are talking about extremely small angles - even the closest star has a parallax of less than one arc-second (1/3600 of a degree).


Is spectroscopic parallax is more accurate than trigonometric parallax for measuring nearby stars?

Spectroscopic parallax is generally less accurate than trigonometric parallax for measuring distances to nearby stars. Trigonometric parallax directly measures the star's slight apparent shift against background stars, providing a precise distance calculation. Spectroscopic parallax, on the other hand, relies on the star's spectral characteristics and assumptions about its intrinsic brightness, introducing uncertainties.


What is the name of the closest star system?

If by star system you mean more than one star but not a galaxy then Alpha Centauri is the closest star system