In the opposite direction, and on the other object. In this case, the chair pushes upward against the person.
When a person is sitting still in a chair, the action and reaction forces meet along his bottom. The 'action' is directed downward and is the person's weight, the result of the gravitational attraction between the Earth's mass and the person's mass. The 'reaction' is directed upward, and is the force developed in the structural materials of the floor and the chair. Since the action and reaction forces are equal and opposite, the net force on the person's bottom is zero, and he does not accelerate vertically.
The most common example is that you throw a ball at the wall, it comes back to you. You do the action and then wall does the reaction by returning the ball with equal magnitude but in a direction opposite to your action.
Assuming that the seat of the chair is horizontal, and you an penis d the chair are stationary, the key forces here are your weight, which is acting vertically downwards on to the chair, and an equal reaction force, or normal contact force, of the chair acting on you. This force acts vertically upwards. You could also include the forces of the air acting on you and vice versa, but this is probably not what you're after.
When you sit in a chair, your weight exerts a downward force on the chair, while the chair exerts an equal and opposite upward force on you. This is an example of Newton's third law of motion in action.
They are equal and opposite (Newton's third law).Each action has an equal an opposite reaction. For example: pulling on a rubber band and letting it go will cause it to fly around. This is the action and related response or reaction desired.
The reaction force to the downward push of Billy's weight on the chair is the upward force of the chair pushing back on him. The downward force of Billy's weight on Earth is countered by the upward force of gravity acting on him.
When you sit in a chair, the action force is the downward force you exert on the chair due to your weight. The reaction force is the upward force exerted by the chair on you, supporting your weight and keeping you from falling to the ground.
When sitting on a chair, the action force is your weight pushing down on the chair, and the reaction force is the chair pushing back up on you with an equal force to support your weight. These forces create an equilibrium that keeps you sitting on the chair.
When a person is sitting still in a chair, the action and reaction forces meet along his bottom. The 'action' is directed downward and is the person's weight, the result of the gravitational attraction between the Earth's mass and the person's mass. The 'reaction' is directed upward, and is the force developed in the structural materials of the floor and the chair. Since the action and reaction forces are equal and opposite, the net force on the person's bottom is zero, and he does not accelerate vertically.
When you sit on a chair, your body exerts a downward force on the chair (action force). In response, the chair exerts an equal and opposite force upward on your body (reaction force), which helps support your weight and keep you from falling. This interaction follows Newton's third law of motion.
Your weight pushing down on the chair is the action force. The reaction force is the force exerted by the chair that pushes up on your body
Your weight pushing down on the chair is the action force. The reaction force is the force exerted by the chair that pushes up on your body
Excuse me ... they DO ! That's why, when you sit in a chair and the downward force of your weight against the chair and the upward force of the chair against your bottom exactly cancel, your bottom doesn't go accelerating somewhere.
Some do and some don't. In the case of someone sitting on a chair, they exert a downward force on the chair due to their weight. The chair exerts an equal and opposite reaction force on them but, since this upward force acting on the person is equal to their weight, the net force is zero and the person does not accelerate. However, consider now if the person pushed themselves up off the chair with their hands. They are now exerting an additional force on the chair with their arms along with the force due to their weight. The chair will exert a reaction force on the person that is equal and opposite to the combined downward force due to the person's weight and their arms pushing. Since it is equal to the weight plus the pushing force of the arms, it will be greater than the downward force on the person due to their weight and a net upward force will be produced, accelerating the person upwards.
The reaction force of the chair you are sitting on is equal to the force you exert on the chair due to your weight. According to Newton's third law, for every action, there is an equal and opposite reaction. So, the chair exerts an equal force in the opposite direction to support your weight.
This is an example of Newton's third law of motion, which states that for every action, there is an equal and opposite reaction. When you sit on a chair, your body exerts a downward force on the chair, and in response, the chair exerts an upward force on your body to support your weight and keep you from falling.
The action force when you sit down on a chair is the force exerted by you on the chair. This force is equal in magnitude and opposite in direction to the reaction force exerted by the chair on you, which supports your weight and keeps you from falling through the chair.