Volume = Mass/Density. In a larger container the mass of the gas remains unchanged, the density decreases so the volume increases.
If the number of gas particles in a small rigid container is doubled, the pressure inside the container will also double, assuming the temperature remains constant. This is because pressure is directly proportional to the number of gas particles in a closed system according to the ideal gas law.
Increased density and temperature.
Changing the color of the container will not affect the pressure inside it. Pressure is determined by factors such as temperature, volume, and the number of gas molecules present, not by the container's color.
Decreasing the number of collisions of gas particles per unit area within a container would result in a decrease in pressure inside the container. This is because pressure is directly proportional to the number of collisions of gas particles on the walls of the container. As the collisions decrease, the pressure exerted by the gas decreases as well.
Pressure in a constant volume (container) is directly proportinal to the number of moles and to the absolute temperature (in K)p :=: n * T with ':=:' meaning 'proportianal to' (not: equal to!)The number of collision is related to and determined by the pressure-value only! (pressure is the result ofcollisions only)
When particles in a closed container are heated, they gain kinetic energy and move faster. This increased movement causes the particles to collide more frequently and with greater force against the container walls, which leads to an increase in pressure inside the container.
If the number of particles in the container were tripled, the pressure in the container would increase because more particles would be colliding with the walls of the container, exerting more force per unit area. This increase in collisions would result in higher pressure.
If the number of gas particles in a small rigid container is doubled, the pressure inside the container will also double, assuming the temperature remains constant. This is because pressure is directly proportional to the number of gas particles in a closed system according to the ideal gas law.
Pressure is defined as the force per unit area applied. This force is derived from the collision of particles. Pressure increase when this force is increase, and it applies otherwise too. By increasing the number of particles in a specific amount of gas, there are more particles colliding onto the container. This causes the force per unit exerted by the gas on the container to increase. As such, when one increases the number of particles within a container of gas, the pressure within the container will increase.
Increased density and temperature.
Changing the color of the container will not affect the pressure inside it. Pressure is determined by factors such as temperature, volume, and the number of gas molecules present, not by the container's color.
Assuming you haven't put any more gas in the container, the pressure will go down. Usually, the reason the volume of the container gets larger is that you put more gas in the container and the gas pressure in the container seeks to equalize with the pressure outside it.
A. temperature B. volume C. number of particles D. size of particles
Decreasing the number of collisions of gas particles per unit area within a container would result in a decrease in pressure inside the container. This is because pressure is directly proportional to the number of collisions of gas particles on the walls of the container. As the collisions decrease, the pressure exerted by the gas decreases as well.
A decrease in temperature or a decrease in the number of gas particles in the container will cause a decrease in gas pressure. Additionally, if some of the gas particles escape from the container, it will also lead to a decrease in pressure.
pressure
The volume stays the same if it is in a container. If it is not then the volume will increase.PV = nRTPressure times Volume = number of moles times Gas constant times temperatureThus if you raise temperature, pressure and/or volume must increase.