The total magnification is 40x. 10x is the lens in the eyepiece and the 4x is in the lens in the low powered objective lens. You have to multiply it to get 40x. Hope I helped! ^_^ And, ironically, I'm doing my science homework right now.
Under a low power objective, the letter "e" would appear larger and more defined compared to a higher magnification. It may appear clearer and easier to discern the details of the letter.
The magnification of an object under a microscope depends on the specific low-power objective lens being used, but it typically ranges from 4x to 10x magnification. To determine how many times larger an object will appear, you would multiply the magnification of the low-power objective by the eyepiece magnification (usually 10x). For example, if using a 10x low-power objective, the total magnification would be 100x, making the object appear 100 times larger than its actual size.
Ask a jellyfish yea.....well if you don't have a jellyfish around when you need it, you can also look at the magnifier, so if a regular microscope has 4x under lwo power, it is 40x, due to 10x already when you look through the ocular piece. so medium power is 10x, would be 100 times magnified, and 40x for high is 400 times magnified.
The distance between the objective and the specimen being observed would be the least under high magnification. Higher magnification requires the objective lens to be closer to the specimen in order to achieve detailed resolution.
When using a microscope, you are magnifying the area under the lens by however many times the magnification is on your lens. On low power the area expanded by the lens is smaller than on high magnification. When on low power more is visible and there is less area to search for your given object under the microscope. I recommend finding the object on low magnification, and then switching to high once you have found it.
Under a low power objective, the letter "e" would appear larger and more defined compared to a higher magnification. It may appear clearer and easier to discern the details of the letter.
The total magnification of a compound microscope is calculated by multiplying the magnification of the ocular lens (usually 10x) with the magnification of the objective lens. If the lowest power objective has a magnification of 4x, then the total magnification would be 40x (10x * 4x).
Total magnification is the term used to describe the magnifying power of a microscope, which is calculated by multiplying the magnification of the objective lens by the magnification of the eyepiece. This formula helps in determining the overall magnification of the specimen being viewed under the microscope.
Magnifying an image allows for easier investigation and viewing capabilities. Images which are under a 10X objective magnification and 6 times larger than an image which is under a 4X magnification.
If the total magnification is 200x and the objective has a magnification of HPO, then the eyepiece would have a magnification of 200/HPO. So, if the objective has a magnification of 20x (assuming HPO=20), then the eyepiece would have a magnification of 200/20 = 10x.
The total magnification is calculated by multiplying the magnification of the objective lens by the magnification of the eyepiece lens. In this case, the total magnification would be 46x (objective) x 5x (eyepiece) = 230x magnification of the specimen.
The magnification of an object under a microscope depends on the specific low-power objective lens being used, but it typically ranges from 4x to 10x magnification. To determine how many times larger an object will appear, you would multiply the magnification of the low-power objective by the eyepiece magnification (usually 10x). For example, if using a 10x low-power objective, the total magnification would be 100x, making the object appear 100 times larger than its actual size.
The magnifying power of the eyepiece can be calculated by multiplying the magnification of the eyepiece by the magnification of the objective lens. In this case, if the eyepiece magnifies 10 times and the total magnification is 100 times, the magnifying power of the eyepiece alone is 10 times. Thus, the eyepiece provides a magnification of 10x, while the objective lens contributes the remaining magnification.
To determine the magnification of an object viewed under a microscope, you can calculate it by multiplying the magnification of the eyepiece by the magnification of the objective lens being used. This will give you the total magnification.
Ask a jellyfish yea.....well if you don't have a jellyfish around when you need it, you can also look at the magnifier, so if a regular microscope has 4x under lwo power, it is 40x, due to 10x already when you look through the ocular piece. so medium power is 10x, would be 100 times magnified, and 40x for high is 400 times magnified.
The distance between the objective and the specimen being observed would be the least under high magnification. Higher magnification requires the objective lens to be closer to the specimen in order to achieve detailed resolution.
When using a microscope, you are magnifying the area under the lens by however many times the magnification is on your lens. On low power the area expanded by the lens is smaller than on high magnification. When on low power more is visible and there is less area to search for your given object under the microscope. I recommend finding the object on low magnification, and then switching to high once you have found it.