pressure
The temperature factor increases to 1.1547, approx.
Temperature, humidity, and rainfall are abiotic factors that affect mushrooms.
According to the Arrhenius equation, the rate constant (k) is affected primarily by temperature and activation energy (Ea). As temperature increases, the rate constant typically increases due to more molecules having sufficient energy to overcome the activation barrier. Additionally, a lower activation energy leads to a higher rate constant, as it requires less energy for the reaction to proceed. Thus, both temperature and the nature of the reaction (reflected in Ea) significantly influence the rate constant.
The rate constant is unaffected, as demonstrated by Arrhenius equation: k = Ae^(-E/RT) where A is the pre-exponential factor (constant for a particular reaction) E is the activation energy R is the molar gas constant T is the thermodynamic temperature However, when pressure is increased at constant temperature for a gaseous reversible reaction, the concentrations of every reactant and product increase by the SAME factor. Since Kp (pressure equilibrium constant) is to remain constant, it means that the position of equilibrium will shift in such a way so as to decrease the total number of moles of gaseous species. Note: This answer can be improved by proving the last statement using a general example which, due to lack of time, I skipped. (Although some people might get the logic!!!)
Ripeness
Temperature
The temperature factor increases to 1.1547, approx.
In the combined gas law equation, pressure, volume, and temperature are related in a way that if one of these factors changes, the others will also change to maintain a constant value for the product of pressure and volume divided by temperature. This relationship helps to predict how changes in one factor will affect the others in a gas system.
the factor that will affect it is temperature.
temperature nature and pressure
temperature nature and pressure
The Arrhenius equation is a mathematical model that relates the rate of a chemical reaction to temperature and activation energy. It helps to predict how the rate of a reaction changes with temperature. The equation is given by k = A * e^(-Ea/RT), where k is the rate constant, A is the pre-exponential factor, Ea is the activation energy, R is the gas constant, and T is the temperature.
Temperature
The amount of gas and its temperature.
Volume & pressure are inversely proportionate, if temperature stays constant volume would decrease at a factor proporionate to the increase in pressure.
Temperature, humidity, and rainfall are abiotic factors that affect mushrooms.
The main factor that affect their temperature are... their proximity to the sun - and their speed of rotation.