resting potential
No, not all cells have a resting potential of -70mV. The resting potential of a cell can vary depending on the type of cell and its function. However, many excitable cells, such as neurons, have a resting potential close to -70mV.
A false statement about a cell's resting membrane potential could be that it does not involve the movement of ions across the cell membrane. In reality, the resting membrane potential is primarily due to the unequal distribution of ions, such as sodium and potassium, across the membrane, maintained by ion channels and pumps.
The inside of a nerve cell is negatively charged at its resting potential, typically around -70 millivolts. This resting membrane potential is maintained by the differential distribution of ions across the cell membrane, with more sodium and calcium ions outside the cell and more potassium ions inside.
The stimuli that can change the resting membrane potential of a cell include changes in ion concentrations inside or outside the cell, neurotransmitter binding to receptors, and mechanical deformation of the cell membrane. These changes can lead to the opening or closing of ion channels, altering the flow of ions across the membrane and affecting the cell's resting membrane potential.
i dont know but i think its beacuase it answer 24
What's wrong with it? As long as nothing between them is happening, friendship is nothing to be ashamed of.
resting potential
cell membrane
The resting potential of a cell is the membrane potential when the cell is at rest, typically around -70 millivolts. Membrane potential refers to the difference in electrical charge across the cell membrane. Resting potential is a type of membrane potential that is maintained when the cell is not actively sending signals.
This is the definition of "resting potential".
nothing
No, not all cells have a resting potential of -70mV. The resting potential of a cell can vary depending on the type of cell and its function. However, many excitable cells, such as neurons, have a resting potential close to -70mV.
The resting membrane potential of a nerve cell or muscle cell is typically around -70 millivolts. This electrical potential is maintained by the unequal distribution of ions across the cell membrane, with more negative ions inside the cell than outside. This resting potential is essential for the cell to respond to changes in its environment and generate electrical signals when needed.
No nothing is happening
The resting nerve cell is not being stimulated to send a nerve impulse
During resting potential, sodium ions are actively pumped out of the cell by the sodium-potassium pump to maintain the concentration gradient. This helps to establish a more positive charge outside the cell, contributing to the negative resting membrane potential inside the cell. Sodium channels are closed during resting potential, preventing sodium ions from moving back into the cell.