No they do not have.That's to provide enough space for oxygen transportation.
RBC's transport oxygen from lungs to other organs at all the RBC were to have mitochondria then they would use up all the oxygen which had to be carried to other organs coz mitochondria require oxygen for ATP synthesis. But the RBC don't have mitochondria instead they generate all the energy(ATP) by glycolysis using glucose.
Red blood cells (RBCs) have an anaerobic metabolism. They lack mitochondria, which are responsible for aerobic metabolism, so RBCs rely solely on anaerobic processes to produce energy. RBCs primarily generate energy through glycolysis, converting glucose into ATP to fuel their functions.
Mature red blood cells (RBCs) lack a nucleus and organelles such as mitochondria, which other cells possess. This allows RBCs to have more space to carry oxygen efficiently. Additionally, RBCs are shaped as biconcave discs to maximize surface area for oxygen and carbon dioxide exchange.
If red blood cells (RBCs) are mixed with a saline solution, the RBCs may undergo hemolysis, where they rupture and release their contents into the solution. This can lead to changes in the osmotic balance and potentially cause damage to the RBCs. It is important to handle RBCs carefully to prevent hemolysis and maintain their function.
We can not extract DNA from RBCs as they are without nucleus. only the source of DNA extraction is Leukocytes, RBCs are not good source of extraction but we can extract DNA from immature RBCs.
Because RBCs have no mitochondria, and mitochondria is necessary for aerobic respiration.
This question makes no sense.
RBC's transport oxygen from lungs to other organs at all the RBC were to have mitochondria then they would use up all the oxygen which had to be carried to other organs coz mitochondria require oxygen for ATP synthesis. But the RBC don't have mitochondria instead they generate all the energy(ATP) by glycolysis using glucose.
Red blood cells (RBCs) have an anaerobic metabolism. They lack mitochondria, which are responsible for aerobic metabolism, so RBCs rely solely on anaerobic processes to produce energy. RBCs primarily generate energy through glycolysis, converting glucose into ATP to fuel their functions.
Mature red blood cells (RBCs) lack a nucleus and organelles such as mitochondria, which other cells possess. This allows RBCs to have more space to carry oxygen efficiently. Additionally, RBCs are shaped as biconcave discs to maximize surface area for oxygen and carbon dioxide exchange.
Most eukaryotic cells -- those that contain nuclei -- also contain mitochondria, but there are exceptions to this rule. Some parasitic protists take energy from their hosts and do not have mitochondria. In humans, mature red blood cells lack mitochondria nor do they have any organelles. The RBCs die after 120 days because of this. They can't make energy.
low rbcs count shows anaemia high rbcs count show polycythemia vera. rbcs enumerations shows the bonemarrow how much active.
1)Mitochondria occur in the cells of aerobic organisms with the exception of mammalian RBCs while Chloroplasts occur in the cells of green photosynthetic parts of plants. 2)Mitochondria is colourless while Chloroplasts is green in colour. 3) Mitochondria's shape is rod-like or sausage-shaped while Chloroplasts are generally disc-like in outline. 4) Mitochondria liberate energy while Chloroplasts trap solar energy and convert it into chemical energy. 5) Mitochondria perform oxidation of food while Chloroplasts synthesize food by photosynthesis. 6) Mitochondria consumes O2 and liberate CO2 while Chloroplasts consumes CO2 and liberate O2.
1)Mitochondria occur in the cells of aerobic organisms with the exception of mammalian RBCs while Chloroplasts occur in the cells of green photosynthetic parts of plants. 2)Mitochondria is colourless while Chloroplasts is green in colour. 3) Mitochondria's shape is rod-like or sausage-shaped while Chloroplasts are generally disc-like in outline. 4) Mitochondria liberate energy while Chloroplasts trap solar energy and convert it into chemical energy. 5) Mitochondria perform oxidation of food while Chloroplasts synthesize food by photosynthesis. 6) Mitochondria consumes O2 and liberate CO2 while Chloroplasts consumes CO2 and liberate O2.
1)Mitochondria occur in the cells of aerobic organisms with the exception of mammalian RBCs while Chloroplasts occur in the cells of green photosynthetic parts of plants. 2)Mitochondria is colorless while Chloroplasts is green in color. 3) Mitochondria's shape is rod-like or sausage-shaped while Chloroplasts are generally disc-like in outline. 4) Mitochondria liberate energy while Chloroplasts trap solar energy and convert it into chemical energy. 5) Mitochondria perform oxidation of food while Chloroplasts synthesize food by photosynthesis. 6) Mitochondria consumes O2 and liberate CO2 while Chloroplasts consumes CO2 and liberate O2.
1)Mitochondria occur in the cells of aerobic organisms with the exception of mammalian RBCs while Chloroplasts occur in the cells of green photosynthetic parts of plants. 2)Mitochondria is colourless while Chloroplasts is green in colour. 3) Mitochondria's shape is rod-like or sausage-shaped while Chloroplasts are generally disc-like in outline. 4) Mitochondria liberate energy while Chloroplasts trap solar energy and convert it into chemical energy. 5) Mitochondria perform oxidation of food while Chloroplasts synthesize food by photosynthesis. 6) Mitochondria consumes O2 and liberate CO2 while Chloroplasts consumes CO2 and liberate O2.
Yes, mature red blood cells primarily rely on anaerobic glycolysis for energy metabolism, as they lack mitochondria which are required for aerobic metabolism. Glycolysis allows them to produce ATP efficiently in the absence of oxygen.