answersLogoWhite

0

False. The closer you are to the epicentre, the smaller the time difference between the arrival of P and S-waves.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Natural Sciences

What happens to The difference in arrival times between p waves And s waves as The distance From the earthquake increase?

The difference between the arrival times increases as the distance from an earthquake epicentre increases as S-waves travel more slowly than P-waves so the greater the distance the further they lag behind.


How could you tell which two observers was farther from an earthquake epicenter by comparing the arrival times of p and S waves for the two locations?

To determine which observer is farther from an earthquake epicenter, you can compare the arrival times of P (primary) waves and S (secondary) waves at each location. P waves travel faster than S waves, so the time difference between their arrivals increases with distance from the epicenter. By analyzing the time difference for each observer, the location with the greater time gap indicates a farther distance from the epicenter. The greater the delay in S wave arrival after the P wave, the farther the observer is from the epicenter.


What is the relationship between the arrival times of p and s and the distance to the earthquake epicenter?

The arrival times of P-waves (primary waves) and S-waves (secondary waves) are crucial for determining the distance to an earthquake epicenter. P-waves travel faster than S-waves, so they arrive first at a seismic station. By measuring the time difference between the arrivals of these two waves, seismologists can calculate the distance to the epicenter, as a longer time interval indicates a greater distance. This relationship is fundamental in seismic analysis and helps in locating the origin of the earthquake.


How is the fact that P waves travel more quickly the S waves used to determine the distance of an earthquake's epicenter from a seismograph station?

The time difference between the arrival of P waves and S waves at a seismograph station is used to determine the distance of an earthquake's epicenter. By measuring this time lag and knowing the speed at which each wave travels through the Earth's interior, scientists can calculate the distance the waves traveled to reach the station. The farther apart the arrival times of P and S waves, the greater the distance of the epicenter from the station.


When finding an epicenter do you subtract s wave minus the p wave?

No, to find the epicenter of an earthquake, you use the difference in arrival times between the P-wave and the S-wave at a seismograph station. The greater the time difference between the two waves, the farther the earthquake's epicenter is from that particular station. Subtraction is not directly involved in this process.

Related Questions

What is the difference in arrival time between P and S waves equivalent to?

The time difference in arrival between P and S waves can help determine the distance to an earthquake epicenter. For each second of difference, the earthquake is roughly 7.5 kilometers away. So, a time difference of, for example, 10 seconds would indicate the earthquake is approximately 75 kilometers away.


What happens to The difference in arrival times between p waves And s waves as The distance From the earthquake increase?

The difference between the arrival times increases as the distance from an earthquake epicentre increases as S-waves travel more slowly than P-waves so the greater the distance the further they lag behind.


Is it true or false that the closer an earthquake the greater the time between the arrival of P waves and the arrival of S waves?

False. The closer an earthquake is, the shorter the time difference between the arrival of P waves and S waves. P waves travel faster than S waves, so the time interval decreases as the distance to the earthquake epicenter decreases.


How do you calculate the distance from an earthquake?

The distance from an earthquake epicenter can be calculated using the time difference between the arrival of P-waves and S-waves at a seismograph station. By measuring this time lag and using the known velocity of seismic waves through the Earth's interior, the distance can be estimated. The greater the time lag between the arrival of the P-wave and S-wave, the farther the seismograph station is from the earthquake epicenter.


How could you tell which two observers was farther from an earthquake epicenter by comparing the arrival times of p and S waves for the two locations?

To determine which observer is farther from an earthquake epicenter, you can compare the arrival times of P (primary) waves and S (secondary) waves at each location. P waves travel faster than S waves, so the time difference between their arrivals increases with distance from the epicenter. By analyzing the time difference for each observer, the location with the greater time gap indicates a farther distance from the epicenter. The greater the delay in S wave arrival after the P wave, the farther the observer is from the epicenter.


How is the fact that P-waves travel faster that S-waves used to determine the distance of an earthquake epicenter from an seismograph station?

Using the difference in their arrival times and an estimate of their velocity of propagation you can calculate the distance of the earthquake epicentre from the seismometer recording station. If you do this from three or more different seismometer stations you can triangulate it's position. For more information please see the related question.


What is the relationship between the arrival times of p and s and the distance to the earthquake epicenter?

The arrival times of P-waves (primary waves) and S-waves (secondary waves) are crucial for determining the distance to an earthquake epicenter. P-waves travel faster than S-waves, so they arrive first at a seismic station. By measuring the time difference between the arrivals of these two waves, seismologists can calculate the distance to the epicenter, as a longer time interval indicates a greater distance. This relationship is fundamental in seismic analysis and helps in locating the origin of the earthquake.


How is the fact that P waves travel more quickly the S waves used to determine the distance of an earthquake's epicenter from a seismograph station?

The time difference between the arrival of P waves and S waves at a seismograph station is used to determine the distance of an earthquake's epicenter. By measuring this time lag and knowing the speed at which each wave travels through the Earth's interior, scientists can calculate the distance the waves traveled to reach the station. The farther apart the arrival times of P and S waves, the greater the distance of the epicenter from the station.


When finding an epicenter do you subtract s wave minus the p wave?

No, to find the epicenter of an earthquake, you use the difference in arrival times between the P-wave and the S-wave at a seismograph station. The greater the time difference between the two waves, the farther the earthquake's epicenter is from that particular station. Subtraction is not directly involved in this process.


What is the difference between a 7.0 earthquake than an 5.0 earthquake?

A 7.0 earthquake is much stronger and more destructive than a 5.0 earthquake. The energy released by a 7.0 earthquake is about 1,000 times greater than that of a 5.0 earthquake. This means that a 7.0 earthquake can cause more severe damage to buildings and infrastructure.


How much greater is a magnitude 8 earthquake than a magnitude 4 earthquake in amplitude?

The Richter magnitude scale is a base-10 logarithmic scale of the shaking amplitude. This means that a difference of 1 in the scale is equivalent to a 10-fold increase in amplitude. So the difference in amplitude between a mag 8 and a mag 4 earthquake is 104.


How are p waves and s waves used to find the distance from a seismic station to the epicenter of an earthquake?

By measuring the time difference between the arrival of P-waves and S-waves at a seismic station, seismologists can calculate the distance from the station to the earthquake's epicenter. P-waves travel faster than S-waves, so the greater the time lag between their arrivals, the farther the station is from the epicenter. By using data from multiple stations, seismologists can triangulate the location of the epicenter.