polarization is not possible for longitudinal waves
in electromagnetic waves electric and magnetic fields are perpendicular to each other and these two are perpendicular to direction of propagation so by using vertical or horizantal slits it is possible to polarize the electromagnetic waves where as in longitudinal waves the particles vibration is parllel to the direction of propagation so it is not possible to polarize the longitudinal waves
Sound waves are longitudinal waves, which means that the particles in the medium vibrate parallel to the direction of the wave's propagation. This is in contrast to transverse waves, where the particles vibrate perpendicular to the direction of the wave's propagation.
No, longitudinal waves do not necessarily travel the fastest. The speed of a wave depends on the medium through which it is traveling. In some mediums, longitudinal waves may travel faster than other types of waves, while in others they may not.
Sound waves are longitudinal waves; they travel from side to side, not up and down like transverse waves.
No, nodes and antinodes do not occur in longitudinal waves. Nodes and antinodes are specific points of constructive and destructive interference, which are characteristic of transverse waves, not longitudinal waves. In a longitudinal wave, particles oscillate parallel to the direction of wave propagation, with areas of compression and rarefaction instead of nodes and antinodes.
S waves are transverse waves, which means the particles in the medium vibrate perpendicular to the direction of wave propagation. This is in contrast to P waves, which are longitudinal waves where the particles vibrate parallel to the wave direction.
Longitudinal waves do not exhibit polarization, which is a characteristic of transverse waves. Polarization refers to the orientation of the oscillations of the wave with respect to its direction of propagation. Since longitudinal waves have their oscillations parallel to the direction of propagation, they cannot exhibit polarization.
Longitudinal waves are characterized by particles oscillating in the same direction as the wave's propagation. They do not display polarization because the oscillations are along the same axis. However, longitudinal waves can diffract as they bend around obstacles or spread out upon encountering an aperture.
No. Since longitudinal waves are vibrating in the direction that they are traveling, polarization has no meaning in their case.
Sound waves are longitudinal waves, which means they oscillate in the same direction as their propagation. Therefore, sound waves do not exhibit polarization like transverse waves, such as light waves.
Yes, plane polarization occurs in transverse waves. In transverse waves, the oscillations of the wave propagate perpendicular to the direction of the wave's travel. This allows the wave to exhibit different types of polarization, such as linear, circular, or elliptical polarization.
The phenomenon that sound wave fails to exhibit is polarization.
Polarisation is specially related to limiting the vibrations in only one direction or a plane. This is possible in case of transverse waves. But in case of longitudinal only one direction of propagation ie to and fro is possible. So no chance of having the phenomenon of polarisation with longitudinal waves.
They can be either longitudinal or transverse. In gases, such as air, and in liquids, only longitudinal waves are possible. In solids, there can be both longitudinal and transverse waves.
That is correct. Polarization is possible only when the direction of vibration is perpendicular to the direction of the wave travel, such is in light. In sound waves, the direction of vibration (compression) is the same direction as the direction of the travel of the sound wave, and therefore polarization is not possible.
Refraction Phenomenon becomes possible for both transverse (light waves) and longitudinal (sound waves)
No, the longitudinal wave can't be polarised. Because polarisation means lack of symmetry. But longitudinal waves are symmetrical from all the sides of vision. This is because their plane of propagation and vibration is same. this wave loks same from all the sides.
No, it is not possible to convert transverse waves into longitudinal waves, as they are fundamentally different types of waves. Transverse waves oscillate perpendicular to the direction of wave propagation, while longitudinal waves oscillate parallel to the direction of wave propagation.