smaller are selected for and larger are selected against
disruptive selection
The type of selection that removes the fringe from both ends of phenotype distribution and establishing a means or average. Genetic diversity decreases and there is a stabilization on a particular trait.
the process is called an DIRECTIONAL selection.
Directional selection is shown on a graph as selection against an extreme. This occurs when individuals at one extreme of a trait distribution have lower fitness than individuals with intermediate phenotypes or those at the opposite extreme. Over time, this can lead to a shift in the average phenotype of a population.
Industrial melanism is an example of directional selection, not stabilizing selection. In this phenomenon, environmental changes such as pollution cause a shift in the frequency of dark-colored individuals within a population, which increases their survival rates due to camouflage. Stabilizing selection, on the other hand, favors the intermediate phenotype, reducing the variation in a population.
Phenotype
disruptive selection
yes
The process is called directional selection, where one extreme phenotype is favored over others in a population, resulting in a shift in the frequency of genes towards that phenotype over generations.
The type of selection that removes the fringe from both ends of phenotype distribution and establishing a means or average. Genetic diversity decreases and there is a stabilization on a particular trait.
Selection operates on the phenotype, which is the observable characteristics of an organism. Organisms with certain phenotypic traits that increase their fitness are more likely to survive and reproduce, passing on their advantageous traits to the next generation.
the process is called an DIRECTIONAL selection.
This type of natural selection is called directional selection and does not display a normal curve of expressed traits, but a heavy set of data to the left of the curve that indicates the direction of selection of the extreme phenotype.Disruptive selection is where two extreme phenotypes are maintained in a population. This curve looks like a two humped camel in it's expression of these extreme traits.
Directional selection is shown on a graph as selection against an extreme. This occurs when individuals at one extreme of a trait distribution have lower fitness than individuals with intermediate phenotypes or those at the opposite extreme. Over time, this can lead to a shift in the average phenotype of a population.
Stabilizing selection reduces variation in a population by favoring the average phenotype, while selecting against extreme phenotypes. This can lead to a decrease in genetic diversity within the population as individuals with extreme traits are less likely to survive and reproduce. Over time, stabilizing selection tends to maintain a stable, intermediate phenotype.
Industrial melanism is an example of directional selection, not stabilizing selection. In this phenomenon, environmental changes such as pollution cause a shift in the frequency of dark-colored individuals within a population, which increases their survival rates due to camouflage. Stabilizing selection, on the other hand, favors the intermediate phenotype, reducing the variation in a population.
Directional selection favors organisms with phenotypes at one extreme relative to the average phenotype. This occurs when individuals with traits at one end of a spectrum have higher fitness, leading to a shift in the population towards that extreme phenotype.