Hydrogen probably cannot exist for a long time on Mars. As you suggest this is
because of the planet's fairly low gravity and escape velocity. It's easier for a
very light atom or molecule, such as hydrogen, to reach the planet's escape velocity, caused by collisions in the atmosphere.
Escape velocity is the minimum speed that an object must reach to break free from the gravitational pull of a celestial body. This velocity allows the object to overcome the body's gravitational force and enter into space. The specific value of escape velocity depends on the mass and radius of the celestial body.
You don't. "Escape velocity" is a meaningless number. "Escape velocity" is the speed at which a CANNON SHELL must be fired in order to escape from the Earth's gravity well. With a powered rocket, you can "escape" from the Earth's gravity at ANY speed - as long as you have enough fuel.
In order for a body to escape the gravitational pull of the Earth, it needs to be thrown up with an initial velocity equal to or greater than the escape velocity of around 11.2 km/s. This velocity allows the object to overcome the gravitational pull of the Earth and continue traveling away from it indefinitely.
Yes, it would. That's one reason why some artificial satellites were tossed into orbit after being carried up aboard the space shuttle. The reason is because escape velocity from Earth depends on Earth's gravity, which in turn depends on the distance from the Earth's center. The higher you go, the farther you are from the center of the planet, the less gravitational force there is between you and the Earth, and the smaller the escape velocity thus becomes.
"Escape velocity" is a misnomer; there isn't any such thing. "Escape velocity" is the speed that it would take a projectile to escape completely from the Earth's gravity, IF IT WERE FIRED FROM THE SURFACE FROM A CANNON.The "escape velocity" from Earth is about 7 miles per second, or 25,000 miles per hour. But the Apollo spacecraft that went to the Moon didn't go anywhere near that speed. It didn't have to, because it was propelled by a rocket engine. With a big enough engine and enough fuel, you could "escape" from the Earth at 5 miles per hour, or less. It would be TERRIBLY wasteful of fuel, which is why we don't do it that way.
The velocity of a any object to surpass the gravity of earth commonly known as escape velocity is 11.2Km/s.
To overcome gravity, you must reach "Escape Velocity" to overcome gravity and escape a planet's orbit.
Escape velocity is given by. √2gR or √2GM/R .therefore escape velocity is directly prop. to gravity of a planet or star or any other body. More is the gravity more is the escape velocity. The escape velocity of our earth is 11.2 km/s and that of moon is 2.31 km/s
Escape Velocity
The escape velocity is determined by the gravity of the planet which in turn is determined by the mass and size of the planet
Inside what? Oxygen is part of the atmosphere. The thermal velocity of its molecules are insufficient to escape earth's gravity (unlike hydrogen molecules which are fast enough).
Escape velocity is the speed that a rocket must reach to break free from Earth's gravity and enter space. It is the minimum velocity required for an object to overcome the pull of Earth's gravity.
It will eventually straighten out as it escapes gravity.
A rocket that doesn't reach "escape velocity" will be overcome by gravity and will be pulled back down to Earth. Also, rockets which go into orbit have not reached escape velocity. Escape velocity is what is needed to completely leave earth's gravity well.
the rocket speed required to escape out of the earth's gravity is known as escape velocity which is numerically equal to 11.2 km per sec.
escape velocity if its leaving earths gravity
Escape velocity is the minimum speed that an object must reach to break free from the gravitational pull of a celestial body. This velocity allows the object to overcome the body's gravitational force and enter into space. The specific value of escape velocity depends on the mass and radius of the celestial body.