The answer is "No". If acceleration changes, forces of inertia should be taken to consideration. It requires dynamic equations of motion. However, if acceleration changes are not significant, you may continue using kinematics. To check if kinematic solution is within required precision limits you need to compare the solution of kinematic and dynamic equations and decide if kinematic solution is good enough.
Kinematics does not require constant acceleration. There are different equations for different situations. So some of the equations will be valid even when the acceleration is not constant.
This statement is true. This type of movement is called Uniform Circular Motion. For every circular motion at constant speed, there is a constant radial acceleration (always pointing towards the center of the circle) named centripetal acceleration. This constant acceleration ensures that at every moment during the motion the orientation of the velocity is changed so that the object stays in a circular path.
True. Kinematics, which is the study of motion without considering the forces that cause the motion, is a fundamental concept in physics. Many professionals in various fields, such as engineers, architects, animators, and even athletes, use kinematics ideas to analyze and design systems involving motion.
Single atoms should be done last Balancing chemicals equations involves trial and error
false A car can have a negative acceleration and be speeding up. A negative acceleration determines the direction of the acceleration A car with forward acceleration will speed up in the forward direction A car moving forward with a negative acceleration will slow down A car not moving with a negative acceleration will speed up in the backward direction A car moving backward with a negative acceleration will speed up in the backward direction
Kinematics does not require constant acceleration. There are different equations for different situations. So some of the equations will be valid even when the acceleration is not constant.
False. In uniform circular motion, the instantaneous acceleration is directed towards the center of the circle, which is called the centripetal acceleration. This acceleration is responsible for changing the direction of the velocity of the particle, even though its speed remains constant.
True. In uniform circular motion, the particle's velocity is tangential to the circular path, and the acceleration is directed radially inward, towards the center of the circular path. This centripetal acceleration causes the change in direction of the particle's velocity, but the magnitude of the velocity remains constant.
This statement is true. This type of movement is called Uniform Circular Motion. For every circular motion at constant speed, there is a constant radial acceleration (always pointing towards the center of the circle) named centripetal acceleration. This constant acceleration ensures that at every moment during the motion the orientation of the velocity is changed so that the object stays in a circular path.
I could hardly tell ya, to be true. But if you use them there kinematics equations ye could probably find 'er out.
The correct answer is: True. Kinematics ideas are used in a number of different fields, including bio-mechanics (studying how artificial joints work), forensics ( studying how car crashes occurred), and even car racing (determining ideal engine settings, acceleration and braking rates, etc.).
True. Kinematics, which is the study of motion without considering the forces that cause the motion, is a fundamental concept in physics. Many professionals in various fields, such as engineers, architects, animators, and even athletes, use kinematics ideas to analyze and design systems involving motion.
The correct answer is: True. Kinematics ideas are used in a number of different fields, including bio-mechanics (studying how artificial joints work), forensics ( studying how car crashes occurred), and even car racing (determining ideal engine settings, acceleration and braking rates, etc.).
No.
True
That they, along with the equations, are invisible!
The statement "A system of linear equations is a set of two or more equations with the same variables and the graph of each equation is a line" is true.