No, the parent in the nuclear equation is not always radioactive. For example, the following reaction shows a neutron capture by 23Na, which is not radioactive.
1123Na + 01n --> 1124Na
where 01n is a neutron.
No, the parent element in a nuclear reaction is not always radioactive. While many parent isotopes are indeed radioactive and decay into stable or unstable daughter isotopes, there are also stable isotopes that can undergo nuclear reactions without being radioactive themselves. For example, stable isotopes can be involved in nuclear reactions such as neutron capture or fusion, but they do not decay over time like radioactive isotopes.
False. When an unstable isotope decays, the resulting daughter isotope may or may not be stable. Some daughter isotopes are stable, while others may still be radioactive and undergo further decay.
Nuclear reactions may or may not involve nuclear transmutation. We need to split hairs here to arrive at the correct answer, and the answer involves the definition of the word transmutation. We sometimes think of transmutation as the changing of one element to another. Fission and fusion reactions do this, and many kinds of radioactive decay also convert one element into another. But there are some kinds of nuclear reactions that do not change an atom from one element to another, but instead change it from one isotope of a given element into another isotope of that element. There are a number of examples of this, and one is where isotopes of a given element absorb a neutron and become another isotope of that element. A given nucleus incorporates the neutron into its nuclear arrangement and the next heavier isotope of that element is created. If a "strict" definition of transmutation is used where it means a nuclear reaction that changes one element into another, then no, this does not always happen as illustrated above with the example of neutron absorption. If a more general interpretation of the term is used where we say that the nucleus transmutes meaning changes configuration, then yes, nuclear reactions involve nuclear transmutation.
Technically the answer is false, however the answer most tests accept as the correct answer is True.According to Nuclear theory when a parent undergoes decay and produces a daughter isotope the daughter may be stable or it may be unstable and further decay until a final stable granddaughter isotope is formed. This process is called a decay chain, however since eventually a stable isotope is formed the acceptable answer is True, even though technically it is not the case.
Carbon-14 has 6 protons. The number of protons in an element's nucleus determines its atomic number, and for carbon, this is always 6, regardless of the isotope. Carbon-14 is a radioactive isotope of carbon, differing from the more common carbon-12 and carbon-13 isotopes by having 8 neutrons.
No, not always.
No, it doesn't.Wrong, it does. There are 2 types of nuclear radiation: prompt & decay.Prompt nuclear radiation occurs for a period of time while the reaction that generates it is happening. Examples are the flash of neutrons, light, x-rays, etc. when a nuclear bomb explodes as well as the sustained neutron flux as a nuclear reactor is in operation. When the reaction stops, prompt nuclear radiation goes away.Decay nuclear radiation occurs as radioactive isotopes decay to different isotopes. As the decay happens (which is a probabilistic process) the radioactive isotope is consumed. This follows an exponential function with one half of the current amount of the radioactive isotope consumed in each period of time called a halflife. While there will always be a tiny residue of the original radioactive isotope, for practical purposes it is considered to be negligible after 5 halflives have passed. When 5 halflives of the radioactive isotope decaying have passed, decay nuclear radiation is considered to have gone away for practical purposes.
During any type of radioactive decay, one isotope (type of atom) will convert into a different isotope.
This is because only one isotope decay.
Energy and electrical charge are two quantities that are always conserved in nuclear decay equation.
No, the parent element in a nuclear reaction is not always radioactive. While many parent isotopes are indeed radioactive and decay into stable or unstable daughter isotopes, there are also stable isotopes that can undergo nuclear reactions without being radioactive themselves. For example, stable isotopes can be involved in nuclear reactions such as neutron capture or fusion, but they do not decay over time like radioactive isotopes.
False. When an unstable isotope decays, the resulting daughter isotope may or may not be stable. Some daughter isotopes are stable, while others may still be radioactive and undergo further decay.
An atom of a given isotope will undergo radioactive decay whenever it feels like it. No joke. The nucleus of a radioactive isotope is unstable. Always. But that atom has no predictable moment of instability leading immediately to the decay event. We use something called a half life to estimate how long it will take for half a given quantity of an isotope to undergo radioactive decay until half the original amount is left, but this is a statistically calculated period. No one knows how long it will take a given atom of a radioactive isotope to decay, except that those with very short half lives will pretty much disappear relatively quickly.
That's because of where each of these processes occur. There is no nuclear fusion inside of Earth. There is probably a small amount of radioactive decay in the Sun, but the power produced by it is insignificant, compared to the huge amount of power produced by nuclear fusion.
The nuclear bombs used in Japan in the end World Two, were dropped with the warning written in pamphlets dropped days before. The symbol for nuclear danger is a yellow and black which everybody seems to know. It is even in hospitals. Nuclear power plants providing electricity are full of them. One of the harmful species from nuclear fallout is the radioactive isotope of strontium, 9038Sr. so nuclear or radiation are harmful and the warning sing has to be always placed in those places.
Technetium (Tc) is the element that is always radioactive and has an atomic number less than 50. It has no stable isotopes and is synthetic, with its most stable isotope having a half-life of about 4.2 million years.
An atom of a given isotope will undergo radioactive decay whenever it feels like it. No joke. The nucleus of a radioactive isotope is unstable. Always. But that atom has no predictable moment of instability leading immediately to the decay event. We use something called a half life to estimate how long it will take for half a given quantity of an isotope to undergo radioactive decay until half the original amount is left, but this is a statistically calculated period. No one knows how long it will take a given atom of a radioactive isotope to decay, except that those with very short half lives will pretty much disappear relatively quickly.