That is false. Assuming an exothermic reaction, e.g., a fusion of hydrogen to helium:
Nuclear reactions release significantly more energy than chemical reactions. Nuclear reactions involve changes in the nucleus of an atom and release energy from the strong nuclear force. In contrast, chemical reactions involve changes in the electron configuration of atoms and release energy from the weaker electromagnetic force.
In a nuclear reaction, the nucleus of an atom undergoes a change. Common examples would be alpha decay, beta decay, fusion, and fusion. In each of those cases, different elements are formed in the process. This never happens in ordinary chemical reactions. In chemical reactions, it is the electrons that are involved , not the nucleus of the atom.
Reactions that involve nuclei, called nuclear reactions, result in a tremendous amount of energy. Two types are fission and fusion.
The nucleus of an atom is the part that takes part in nuclear reactions. It consists of protons and neutrons, which are involved in processes such as fission and fusion. The electrons surrounding the nucleus are not typically involved in nuclear reactions.
A controlled nuclear reaction is one in which the average number of reactions per second does not increase.
Nuclear decay rates vary, but chemical reaction rates are constant
Nuclear reactions release significantly more energy than chemical reactions. Nuclear reactions involve changes in the nucleus of an atom and release energy from the strong nuclear force. In contrast, chemical reactions involve changes in the electron configuration of atoms and release energy from the weaker electromagnetic force.
Nuclear reactions involve changes in the nucleus of an atom, such as nuclear fission (splitting of a nucleus) and nuclear fusion (combining of nuclei). These reactions release large amounts of energy and are the basis for nuclear power and weapons. The products of these reactions can be different elements and isotopes.
Nuclear reactions involve the reaction of nuclei and does not involve transfer of electron as in regular chemical reactions.
In a nuclear reaction, the nucleus of an atom undergoes a change. Common examples would be alpha decay, beta decay, fusion, and fusion. In each of those cases, different elements are formed in the process. This never happens in ordinary chemical reactions. In chemical reactions, it is the electrons that are involved , not the nucleus of the atom.
Reactions that involve nuclei, called nuclear reactions, result in a tremendous amount of energy. Two types are fission and fusion.
What is the equation that calculates in nuclear reaction?
The nucleus of an atom is the part that takes part in nuclear reactions. It consists of protons and neutrons, which are involved in processes such as fission and fusion. The electrons surrounding the nucleus are not typically involved in nuclear reactions.
A controlled nuclear reaction is one in which the average number of reactions per second does not increase.
No, nuclear reactions refer to any processes involving changes in the nucleus of an atom, which includes both nuclear fission and fusion. Nuclear fusion specifically refers to the process where two atomic nuclei combine to form a heavier nucleus, releasing a large amount of energy.
In nuclear reactions the atom itself changes while molecules and/or structural organisation of atoms do in chemical and physical changes.
Radioactive reaction is a red-ox reaction. This is a nuclear decay.