false
they tend to have low boiling points
KCl is an ionic compound and glucose is a molecular compound. Ionic compounds have higher boiling points than molecular compounds.
Simple molecular compounds have discrete molecules held together by weak intermolecular forces, while giant molecular compounds have repeating units bonded together by strong covalent bonds. Simple molecular compounds typically have low melting and boiling points and are often gases or liquids at room temperature, while giant molecular compounds tend to have high melting and boiling points and are usually solids at room temperature.
Nitro compounds have high boiling points compared to other compounds of similar molecular mass because they exhibit strong intermolecular forces, such as hydrogen bonding, dipole-dipole interactions, and London dispersion forces. These intermolecular forces require more energy to overcome, resulting in a higher boiling point for nitro compounds.
This is false. Ionic compounds have higher boiling points than molecular compounds. For example, the boiling point of the ionic compounds copper(II) oxide, CuO, and sodium chloride, NaCl are 2,000 degrees C and 1,413 degrees C, respectively. The boiling point of the molecular compounds carbon tetrachloride, CCl4, and water, H2O are 76.72 degrees C and 100 degrees C, respectively.
Some common properties of organic compounds include having covalent bonds, containing carbon and hydrogen atoms, being flammable, having low melting and boiling points, and often having a complex molecular structure.
Ionic bonds are significantly resistant to heat, while molecular bonds are broken more easily with the addition of heat energy. Due to this, ionic compounds have much higher boiling points than molecular substances in most cases.
Molecular compounds typically have lower melting points and boiling points compared to ionic compounds. This is because molecular compounds are held together by weaker intermolecular forces (such as Van der Waals forces) compared to the strong electrostatic interactions in ionic compounds.
Ionic compounds tend to have higher melting and boiling points compared to molecular compounds. This is because ionic bonds are generally stronger than the intermolecular forces present in molecular compounds, such as van der Waals forces. The strong electrostatic forces between ions in an ionic compound require more energy to overcome, leading to higher melting and boiling points.
Because have lower melting points and boiling points
You can determine whether a compound is ionic or molecular based on the types of elements it contains. Ionic compounds typically consist of a metal and a nonmetal, while molecular compounds are made up of nonmetals only. Additionally, ionic compounds tend to have high melting and boiling points, while molecular compounds have lower melting and boiling points.
KCl is an ionic compound and glucose is a molecular compound. Ionic compounds have higher boiling points than molecular compounds.
Simple molecular compounds have discrete molecules held together by weak intermolecular forces, while giant molecular compounds have repeating units bonded together by strong covalent bonds. Simple molecular compounds typically have low melting and boiling points and are often gases or liquids at room temperature, while giant molecular compounds tend to have high melting and boiling points and are usually solids at room temperature.
The bonds in the molecule are weaker.
Low melting and boiling points. Some are polar and some are nonpolar. Those that are polar will dissolve in water. They also do not conduct electricity.
Simple molecular structures like H2O and CO2 have the following properties: 1) Physical state: usually liquids and gases at room temperature due to weak intermolecular forces 2) Melting and boiling points: low (below 2000 C) melting and boiling points due to weak intermolecular forces 3) Electrical conductivity: cannot conduct electricity because there are no free electrons 4) Solubility: insoluble in water, but soluble in organic substances such as petrol Macromolecular structures such as diamond and SiO2 have the following properties: 1) Physical state: hard solids at room temperature due to the many strong covalent bonds holding the atoms together 2) Melting and boiling points: high melting and boiling points due to the many strong covalent bonds that must be broken before the substance can change state 3) Electrical conductivity: cannot conduct electricity because there are no free electrons 4) Solubility: insoluble
Molecular compounds are formed from covalent bonds between nonmetals. They have relatively low melting and boiling points, are generally insoluble in water, and tend to be gases or liquids at room temperature. They do not conduct electricity in either solid or liquid state.
Compounds bonded by covalent bonds do not necessarily have low melting points. Some have whereas some don't have.Some polymers and hydrocarbons have very high melting points. But it can be said that they don't have melting points as high as ionic compounds. It is so because ionic bonds are stronger than the covalent bonds.