answersLogoWhite

0

In principle yes, but its effects are completely negligible above the quantum level.

The Uncertainty Principle is valid at all levels - but it is only noticeable at the quantum level. For example it is difficult to know both the momentum and location of an electron because the uncertainty of these values is close in magnitude to the real values. x=1 +/- 1

whereas both the momentum and location of the planet Jupiter are known to a very large degree of accuracy because the value of its location is much great than the uncertainty in its location.

x=1.5 x 1059 +/- 1

the uncertainty is alway of the same magnitude, you see.

(no units to these values as I'm too lazy to look them up or do any sort of conversions)

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Natural Sciences

Who develped a principle that says it is impossible to know both location and mass of an electron at the same time?

Werner Heisenberg developed this principle, known as the Heisenberg Uncertainty Principle.


Heisenberg is famous for what principle?

Heisenberg is famous for the Heisenberg Uncertainty Principle, which states that it is impossible to simultaneously know both the exact position and exact momentum of a particle. This principle is a fundamental concept in quantum mechanics and has profound implications for our understanding of the behavior of particles on a very small scale.


What technology proves whose patent paper published that Heisenberg Uncertainty principle in Physics is wrong?

The Heisenberg Uncertainty principle is part of the foundations of Quantum Mechanics and is still considered to be valid today. It means there is a fundamental fuzziness or uncertainty about the world at the quantum level. Even in principle we cannot know to high accuracy say both the position and the momentum of a small particle like the electron.


Does the Heisenberg uncertainty principle apply to cars and airplanes?

No, the Heisenberg uncertainty principle applies to the behavior of subatomic particles, not to macroscopic objects like cars and airplanes. The principle states that it is impossible to know both the exact position and momentum of a particle simultaneously. This uncertainty arises due to the wave-particle duality of particles at the quantum level.


Why Heisenberg principle introduce?

The Heisenberg Uncertainty Principle was introduced by Werner Heisenberg in 1927 to explain the limitation of simultaneously knowing both the position and momentum of a subatomic particle. It states that the more accurately we know the position of a particle, the less accurately we can know its momentum, and vice versa. This principle is a fundamental concept in quantum mechanics and has significant implications for our understanding of the behavior of particles at the quantum level.

Related Questions

Who develped a principle that says it is impossible to know both location and mass of an electron at the same time?

Werner Heisenberg developed this principle, known as the Heisenberg Uncertainty Principle.


Heisenberg is famous for what principle?

Heisenberg is famous for the Heisenberg Uncertainty Principle, which states that it is impossible to simultaneously know both the exact position and exact momentum of a particle. This principle is a fundamental concept in quantum mechanics and has profound implications for our understanding of the behavior of particles on a very small scale.


Who invented the heisenberg's uncertainty principle?

Werner Heisenberg. Born in Munich, Germany in 1901 and died in 1976. Heisenberg examined features of qauntum mechanics that was absent in classical mechanics. Thus created the "Heisenberg Uncertainty Principle".


What technology proves whose patent paper published that Heisenberg Uncertainty principle in Physics is wrong?

The Heisenberg Uncertainty principle is part of the foundations of Quantum Mechanics and is still considered to be valid today. It means there is a fundamental fuzziness or uncertainty about the world at the quantum level. Even in principle we cannot know to high accuracy say both the position and the momentum of a small particle like the electron.


Does the Heisenberg uncertainty principle apply to cars and airplanes?

No, the Heisenberg uncertainty principle applies to the behavior of subatomic particles, not to macroscopic objects like cars and airplanes. The principle states that it is impossible to know both the exact position and momentum of a particle simultaneously. This uncertainty arises due to the wave-particle duality of particles at the quantum level.


Why Heisenberg principle introduce?

The Heisenberg Uncertainty Principle was introduced by Werner Heisenberg in 1927 to explain the limitation of simultaneously knowing both the position and momentum of a subatomic particle. It states that the more accurately we know the position of a particle, the less accurately we can know its momentum, and vice versa. This principle is a fundamental concept in quantum mechanics and has significant implications for our understanding of the behavior of particles at the quantum level.


States that is imposible to know both the velocity and the position of a particle at the same time?

The heisenberg uncertainty principle is what you are thinking of. However, the relation you asked about does not exist. Most formalisms claim it as (uncertainty of position)(uncertainty of momentum) >= hbar/2. There is a somewhat more obscure and less useful relation (uncertainty of time)(uncertainty of energy) >= hbar/2. But in this relation the term of uncertainty of time is not so straightforward (but it does have an interesting meaning).


How does Schrodinger agrees with Heisenberg's principle?

Schrodinger agrees with Heisenberg's principle by acknowledging the inherent uncertainty and indeterminacy in quantum mechanics. He recognizes that the more precisely we know a particle's position, the less precisely we can know its momentum, and vice versa, as described by Heisenberg's uncertainty principle. Schrodinger's wave equation successfully describes the probability distribution of a particle's position, reflecting this uncertainty.


Who came up with the uncertainty principle?

The uncertainty principle was formulated by German physicist Werner Heisenberg in 1927 as part of his work in quantum mechanics. It states that certain pairs of physical properties, such as position and momentum of a particle, cannot be precisely known simultaneously.


What principle says that the location and velocity of electrons cannot be known at the same time?

Heisenberg's Uncertainty Principle states that the more precisely we know the position of a particle (like an electron), the less precisely we can know its momentum and vice versa. This uncertainty arises from the wave-particle duality of quantum mechanics.


Which german scientist formulated the 'uncertainty principal'?

In 1927 Werner Karl Heisenberg published his uncertainty principle stating that you cannot know the precise location of a particle and know its momentum at the same time.


What is the heisenberg uncertainty prin?

The Heisenberg uncertainty principle states that it is impossible to measure both the position and momentum of a particle with absolute certainty. This is because the act of measuring one of these properties inherently affects the measurement of the other. The principle is a fundamental concept in quantum mechanics.