temperature is the measure of a molecule's average kinetic energy, so yes.
Kinetic energy is directly related to temperature. As temperature increases, the average kinetic energy of the particles in a substance also increases. This is because temperature is a measure of the average kinetic energy of the particles in a substance.
The average kinetic energy of colliding particles can be increased by increasing temperature.
temperature is the average kinetic energy of a particle
Temperature increases when particles are moving faster on average. This is because temperature is a measure of the average kinetic energy of the particles in a substance. As particles move faster, they have higher kinetic energy, leading to an increase in temperature.
The measure of intensity of heat in degrees reflecting the average kinetic energy of the molecules is temperature. Temperature is a quantitative measure of the average kinetic energy of the particles in a substance or system. The higher the temperature, the greater the average kinetic energy of the molecules.
The measure of the average kinetic energy of a group of molecules is expressed as temperature. As temperature increases, molecules move faster and their kinetic energy increases. This average kinetic energy is directly related to the temperature of the system.
The average kinetic energy of the molecules in a material increases as the temperature of the material increases. This is because temperature is directly proportional to the average kinetic energy of the molecules according to the kinetic theory of gases.
Temperature measures the average kinetic energy of air molecules. As the temperature increases, the molecules move faster and have higher kinetic energy.
The temperature of the substance directly determines the average kinetic energy of its molecules. As temperature increases, molecules move faster and their kinetic energy increases. Conversely, a decrease in temperature results in slower molecular motion and lower kinetic energy.
The measure of the kinetic energy of a substance's molecules is typically expressed through the concept of temperature. Temperature is a measure of the average kinetic energy of the particles in a substance. As temperature increases, the kinetic energy of the molecules also increases.
Temperature is a measure of the average value of the kinetic energy of the molecules in a substance. As temperature increases, the kinetic energy of the molecules also increases, leading to higher speeds and more rapid movement.
The average kinetic energy of a gas is directly proportional to its temperature. This is described by the kinetic theory of gases, which states that the average kinetic energy of gas molecules is directly related to the temperature of the gas. As temperature increases, the average kinetic energy of the gas molecules also increases.
This statement is correct according to the kinetic theory of gases. The average kinetic energy of gas molecules is directly proportional to the temperature of the gas. This means that at a given temperature, all gas molecules will have the same average kinetic energy.
The average kinetic energy of all molecules in an object is directly proportional to the object's temperature. As temperature increases, the average kinetic energy of the molecules also increases. This kinetic energy is a measure of the average speed of the molecules within the object.
The average kinetic energy of the gas molecules increases. This is because temperature is directly proportional to kinetic energy, as stated by the Kinetic Theory of Gases. Therefore, as the temperature increases, the molecules have higher kinetic energy.
Directly proportional-- If average KE increases, temperature increases, and vice versa.
The average kinetic energy of water molecules is directly proportional to the temperature of the water. As the temperature increases, the average kinetic energy of the water molecules increases as well. This energy is a measure of the motion of the molecules, with higher temperatures corresponding to higher average kinetic energies.