Type your answer here... Al3+(aq) + 3e- Al(s) and Au(s) Au+(aq) + e-
the gold metal
In an electrolytic cell, an external power source is needed to drive a non-spontaneous redox reaction, while in a voltaic cell, the redox reaction is spontaneous and generates electric energy. In an electrolytic cell, the anode is positive and the cathode is negative, whereas in a voltaic cell, the anode is negative and the cathode is positive.
The aluminum metals
the redox reaction is reserved
A galvanic cell can become an electrolytic cell by applying an external voltage that is of opposite polarity to the cell's spontaneous voltage. This external voltage can overcome the natural tendency of the cell to generate electricity and drive a non-spontaneous chemical reaction in the reverse direction, converting it into an electrolytic cell.
At the cathode of the electrolytic cell with zinc and aluminum electrodes, the reduction of aluminum ions into aluminum metal will occur. Aluminum ions gain electrons to form solid aluminum metal, while zinc remains unchanged as it does not participate in the reaction at the cathode.
the gold metal
-2.48
the gold metal
Au(s) | Au+(aq) Al3+(aq) | Al(s)(-_^)
In an electrolytic cell with aluminum and gold electrodes, aluminum would be oxidized at the anode. This is because aluminum has a higher tendency to lose electrons compared to gold, making it more likely to undergo oxidation.
An electrolytic cell uses an external power source to drive a non-spontaneous chemical reaction. Electricity is used to force electrons through the cell, causing a redox reaction to occur at the electrodes. This allows for the production of new chemical compounds or the separation of substances.
Ni2+
In an electrolytic cell, an external power source is needed to drive a non-spontaneous redox reaction, while in a voltaic cell, the redox reaction is spontaneous and generates electric energy. In an electrolytic cell, the anode is positive and the cathode is negative, whereas in a voltaic cell, the anode is negative and the cathode is positive.
The Redox Reaction Is Reversed
the redox reaction is reserved
A Galvanic cell, or Voltaic cell, named after Luigi Galvani, or Alessandro Volta respectively, is an electrochemical cell that derives electrical energy from chemical reactions taking place within the cell. It generally consists of two different metals connected by a salt bridge, or individual half-cells separated by a porous membrane.An electrolytic cell decomposes chemical compounds by means of electrical energy, in a process called electrolysis; the Greek word lysis means to break up. The result is that the chemical energy is increased. Important examples of electrolysis are the decomposition of water into hydrogen and oxygen, and bauxite into aluminum and other chemicals.