Well, scientists have been researching fusion reactors for over 50 years, but nuclear fusion is much more difficult to achieve than nuclear fission, which is what current nuclear power technology is based on. There are many reasons for this, but while there have been tests and advancements in the field, scientists have yet to a) create a sustainable and stable nuclear fusion reaction and b) create a reaction that has a greater output than input.
Nuclear fusion has been primarily used in research facilities and laboratories to study its potential for generating energy. It has not yet been harnessed for practical energy production on a commercial scale, although there are ongoing efforts to develop fusion reactors for this purpose.
One major disadvantage of using nuclear fusion reactors is the challenge of controlling and sustaining the extreme conditions required for fusion reactions to occur, such as high temperatures and pressures. Additionally, the technology is still in the developmental stage and has not yet been deployed on a large scale for energy production.
Even though the idea of using controlled nuclear fusion for human benefits has been studied since the 1950s, there is still no success in controlling it. Fusion reactors, then, would have to be defined as H-bombs and stars at this point. EDIT: NONSENSE! I suggest you google Tomak. This is controlled fusion and currently best international practice will get you 10x the energy you put into it. It isn't used because it is more expensive that oil, coal and fission power.
The only place in which nuclear FUSION takes place is in stars (the sun included), and in the detonation of a hyndrogen bomb. If you are asking about nuclear FISSION (an entirely different process), restate the question.
We don't know much about fusion as it is still very experimental. It will not produce the dangerous fission products that fission does, but it may have other dangers unknown as yet. Nuclear fusion has more destructive potential than fission. Fusion is the principle powering the H-bomb developed in the Cold War. Just to put the power of a Fusion bomb in perspective, it is detonated by a fission bomb half the size of the one dropped on Japan. THAT'S JUST THE DETONATOR.
Fusion reactors have not been built yet because it is challenging to create and sustain the extreme conditions required for nuclear fusion to occur, such as high temperatures and pressures. Scientists are still working on developing the technology to make fusion reactors a viable and practical energy source.
Nuclear fusion has been primarily used in research facilities and laboratories to study its potential for generating energy. It has not yet been harnessed for practical energy production on a commercial scale, although there are ongoing efforts to develop fusion reactors for this purpose.
Well, scientists have been researching fusion reactors for over 50 years, but nuclear fusion is much more difficult to achieve than nuclear fission, which is what current nuclear power technology is based on. There are many reasons for this, but while there have been tests and advancements in the field, scientists have yet to a) create a sustainable and stable nuclear fusion reaction and b) create a reaction that has a greater output than input. If we were to perfect the technology and use it commercially, it would probably give the earth unlimited technology as it would have an energy output similar to that of a star.
Nuclear fusion is unsure now at industrial scale.
No. "Reactors" contain fission reactions. No useful way of containing fusionon an industrial scale outside the laboratory has been developed yet.Edit: Tomak fusion reactors currently produce 10 times the energy that is put into them. The historical increase into the gain of fusion reactors has bettered the increase of capacity of DRAMs. The only reason that that it "isn't out of the laboratory" is because when you build a fusion reactor, it is usually called a laboratory.
Fusion reactors have not been developed and built yet because it is a complex and challenging process to control and sustain nuclear fusion reactions at a scale that is practical for energy production. Scientists are still working on overcoming technical and engineering obstacles to make fusion power a viable and reliable source of energy.
No, not yet. Maybe in another 20 years when its perfected (which they have been saying every 20 years since they originally began work in the 1950s on lab prototypes of controlled nuclear fusion reactors for power generation).
One major disadvantage of using nuclear fusion reactors is the challenge of controlling and sustaining the extreme conditions required for fusion reactions to occur, such as high temperatures and pressures. Additionally, the technology is still in the developmental stage and has not yet been deployed on a large scale for energy production.
Fission takes place in nuclear reactors, which are useful to produce electricity. Fusion has not yet been harnessed on earth, so the only place it happens is in stars
Most nuclear reactors are thermal-neutron reactors. A few fast breeder reactors have been built, but not many.
In nature, the stars. Man made reactors have not been successful yet, but the most promising are the tokamak types, which are toroidal chambers where a plasma containing the fuel in gaseous form is heated to a very high temperature to produce fusion. You can read more in Wikipedia
Nuclear fusion has not yet been achieved on Earth but it is the process by which the un and stars are believed to gain their energy. At the moment nuclear reactors use nuclear fission, which is the splitting of radioactive nucleii. Nuclear fussion is the combining, or the fusion, of atoms which would release much much more energy. Many scientists believe that this is the way we need to go to solve the energy crisis.