The "upright" of the ladder in the structure of DNA refers to the sugar-phosphate backbone. This backbone is composed of alternating sugar molecules (deoxyribose in DNA) and phosphate groups. These molecules are held together by covalent bonds, creating a stable structure that supports the genetic information encoded in the nitrogenous bases attached to the sugars.
The upright sides of the ladder-like model of DNA consist of alternating sugar (deoxyribose) and phosphate molecules, which make up the backbone of the DNA molecule. The sugar-phosphate backbone provides structural support and stability to the DNA molecule.
The four molecules that make up the rungs of the DNA ladder are adenine, thymine, guanine, and cytosine. Adenine pairs with thymine, and guanine pairs with cytosine through hydrogen bonding to form the base pairs of the double helix structure.
The rungs of the DNA ladder are composed of alternating deoxyribose sugar molecules and phosphate groups.
There are 4 nucleotides that make up the ladder: adenine and thymine, cytosine and guanine. There is a double bond between A and T, and a triple bond between C and G. The two substances that make up the SIDES of the ladder are sugar and phosphate, known as a sugar-phosphate strand.
the whole DNA strand looks like a twisted ladder. the molecules are on the strand.
The phosphate groups and deoxyribose molecules makes up the DNA ladder.
Deoxyribose
The upright sides of the ladder-like model of DNA consist of alternating sugar (deoxyribose) and phosphate molecules, which make up the backbone of the DNA molecule. The sugar-phosphate backbone provides structural support and stability to the DNA molecule.
The four molecules that make up the rungs of the DNA ladder are adenine, thymine, guanine, and cytosine. Adenine pairs with thymine, and guanine pairs with cytosine through hydrogen bonding to form the base pairs of the double helix structure.
Deoxyribose
The sugar-phosphate backbone of DNA is made up of alternating sugar (deoxyribose) and phosphate molecules. These molecules form the "rungs" of the DNA ladder, connecting the nitrogenous bases that make up the steps of the ladder.
The rungs of the DNA ladder are composed of alternating deoxyribose sugar molecules and phosphate groups.
Oh, dude, it's like the nucleotides are the building blocks of DNA, right? So, the sides of the DNA ladder are made up of sugar and phosphate molecules bonded together. It's like the backbone of the whole DNA structure, holding it all together.
The sides of the DNA ladder are alternating deoxyribose (sugar) molecules and phosphate molecules. The DNA bases attach to the sugar molecules.
The sides of the DNA ladder is composed of sugar and phosphate. 4 bases that make up the rungs of the DNA ladder are A, T, G, and C. The shape of the DNA is a double helix or twisted ladder.
There are 4 nucleotides that make up the ladder: adenine and thymine, cytosine and guanine. There is a double bond between A and T, and a triple bond between C and G. The two substances that make up the SIDES of the ladder are sugar and phosphate, known as a sugar-phosphate strand.
the whole DNA strand looks like a twisted ladder. the molecules are on the strand.