answersLogoWhite

0

Sodium is mostly concentrated in the extracellular space, and potassium in the cytoplasm.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Natural Sciences

What is the approximate resting potential of a neuron?

It is -70 millivolts. The resting potential of a neuron refers to the voltage difference across the plasma membrane of the cell, and is expressed as the voltage inside the membrane relative to the voltage outside the membrane. The typical resting potential voltage for a neuron is -70mV Resting potentials occur because of the difference in concentration of ions inside and outside of the cell, largely by K+ (Potassium ions) but some contribution is made by Na+(Sodium ions)


What system keeps the neuron at resting potential?

The sodium-potassium pump is responsible for maintaining the resting membrane potential of a neuron by actively pumping sodium ions out of the cell and potassium ions into the cell, against their concentration gradients. This creates an imbalance of ions across the membrane, contributing to the resting potential of the neuron.


What is the inside charge of a nerve at its resting potentail?

The inside of a nerve cell is negatively charged at its resting potential, typically around -70 millivolts. This resting membrane potential is maintained by the differential distribution of ions across the cell membrane, with more sodium and calcium ions outside the cell and more potassium ions inside.


A resting potential is caused by a difference in the concentration of certain ions inside and outside the cell?

The resting potential of a cell is primarily created by the unequal distribution of ions across the cell membrane, with more sodium ions outside and more potassium ions inside. This creates an electrical gradient known as the resting membrane potential, typically around -70mV in neurons. The selective permeability of the cell membrane to ions and the actions of the sodium-potassium pump play a key role in maintaining the resting potential.


What system keeps the neuron at it's resting potential?

The sodium-potassium pump maintains the neuron's resting membrane potential by actively pumping sodium ions out of the cell and potassium ions into the cell, creating a negative internal charge. This helps to establish the typical resting potential of -70mV in neurons.

Related Questions

What is the approximate resting potential of a neuron?

It is -70 millivolts. The resting potential of a neuron refers to the voltage difference across the plasma membrane of the cell, and is expressed as the voltage inside the membrane relative to the voltage outside the membrane. The typical resting potential voltage for a neuron is -70mV Resting potentials occur because of the difference in concentration of ions inside and outside of the cell, largely by K+ (Potassium ions) but some contribution is made by Na+(Sodium ions)


What system keeps the neuron at resting potential?

The sodium-potassium pump is responsible for maintaining the resting membrane potential of a neuron by actively pumping sodium ions out of the cell and potassium ions into the cell, against their concentration gradients. This creates an imbalance of ions across the membrane, contributing to the resting potential of the neuron.


What is the significance of the cl- equilibrium potential in determining the resting membrane potential of a neuron?

The equilibrium potential for chloride ions (Cl-) plays a significant role in determining the resting membrane potential of a neuron. This is because the movement of chloride ions across the cell membrane can influence the overall balance of ions inside and outside the neuron, which in turn affects the resting membrane potential. If the equilibrium potential for chloride ions is altered, it can lead to changes in the resting membrane potential and impact the neuron's ability to transmit signals effectively.


What restores the resting potential after the action potential passes through an axon?

The resting potential is restored after the action potential passes through an axon by the sodium-potassium pump, which actively transports sodium ions out of the cell and potassium ions into the cell. This process helps maintain the balance of ions inside and outside the cell, returning the membrane potential to its resting state.


What is the inside charge of a nerve at its resting potentail?

The inside of a nerve cell is negatively charged at its resting potential, typically around -70 millivolts. This resting membrane potential is maintained by the differential distribution of ions across the cell membrane, with more sodium and calcium ions outside the cell and more potassium ions inside.


How do sodium ions move during resting potential?

During resting potential, sodium ions are actively pumped out of the cell by the sodium-potassium pump to maintain the concentration gradient. This helps to establish a more positive charge outside the cell, contributing to the negative resting membrane potential inside the cell. Sodium channels are closed during resting potential, preventing sodium ions from moving back into the cell.


A resting potential is caused by a difference in the concentration of certain ions inside and outside the cell?

The resting potential of a cell is primarily created by the unequal distribution of ions across the cell membrane, with more sodium ions outside and more potassium ions inside. This creates an electrical gradient known as the resting membrane potential, typically around -70mV in neurons. The selective permeability of the cell membrane to ions and the actions of the sodium-potassium pump play a key role in maintaining the resting potential.


What system keeps the neuron at it's resting potential?

The sodium-potassium pump maintains the neuron's resting membrane potential by actively pumping sodium ions out of the cell and potassium ions into the cell, creating a negative internal charge. This helps to establish the typical resting potential of -70mV in neurons.


Through the membrane of a resting neuron highly permeable to potassium ions its membrane potential does not exactly match the equilibrium potential for potassium because the neuronal membrane is?

The neuronal membrane also has ion channels for other ions besides potassium, such as sodium or chloride, that can influence the resting membrane potential. These other ions contribute to the overall equilibrium potential of the neuron, which affects its resting membrane potential. Additionally, the activity of Na+/K+ pumps helps establish and maintain the resting membrane potential, contributing to the slight difference from the potassium equilibrium potential.


Why the resting membrane potential of erythrocyte is more negative?

The resting membrane potential of erythrocytes is more negative due to the higher permeability of the plasma membrane to potassium ions compared to sodium ions. Potassium ions have a negative resting potential, so when they move out of the cell more readily than sodium ions move in, it results in a more negative membrane potential. This is important for maintaining the cell's shape and functions.


What about a cell's resting membrane potential is FALSE?

A false statement about a cell's resting membrane potential could be that it does not involve the movement of ions across the cell membrane. In reality, the resting membrane potential is primarily due to the unequal distribution of ions, such as sodium and potassium, across the membrane, maintained by ion channels and pumps.


Why is the inside of the cell membrane negatively charged at resting potential?

The inside of the cell membrane is negatively charged at resting potential because of an unequal distribution of ions, specifically more negatively charged ions inside the cell compared to outside. This creates an electrical potential difference across the membrane, known as the resting membrane potential.