The speed of sound in air at room temperature is 350 m/s. At 21 C it is 343.6 m/s
The speed of sound is normally calculated using the values of a "standard atmospheric day." A "standard atmospheric day" refers to a sea level pressure of 29.92 in-Hg (1013.2 mb) and a temperature of 15°C (59°F). At standard day values, the speed of sound is 761 mph. Other speeds, such as those presented below, use values other than those relating to a "standard atmospheric day." They are not incorrect, they are simply based on values other than a "standard atmospheric day."The speed of sound is 343 m/s or 1126.547 ft/s (768.095 mph) at a temperature of 20°C or 68°F.The speed of sound has nothing to do with the atmospheric pressure at sea level, but the temperature is very important.Scroll down to related links and read the short article "Speed of sound - temperature matters, not air pressure".The air pressure and the air density are proportional to each other at the same temperature.The speed of sound c depends on the temperature of air and not on the air pressure!The humidity of air has some negligible effect on the speed of sound. The air pressureand the density of air (air density) are proportional to each other at the same temperature.It applies always p / ρ = constant. rho is the density ρ and p is the sound pressure.Notice: The speed of sound is alike on a mountain top as well as at sea level with the same air temperature.Google is not correct (look at the following link):http://www.google.com/search?q=speed+of+sound+at+sea+levelHere is the answer of Google: "Speed of sound at sea level = 340.29 m/s".This is no good answer, because they forgot to tell us the temperature,and the atmospheric pressure "at sea level" has no sense.The speed of sound in air is determined by the air itself. It is not dependent upon the sound amplitude, frequency or wavelength.
what is the speed of sound in ntp
The speed of sound depends on the air factors around it
The speed of sound is approximately 343 meters per second (at standard conditions). There is no direct conversion from speed of sound to rpm (revolutions per minute), as rpm is a measure of rotational speed, while the speed of sound is a measure of how quickly sound waves travel through a medium like air.
Speed of sound would increase as the temperature of the air increases Speed of sound increases as humidity of air increases Speed of sound is affected by the density of the air. As density increases velocity of sound decreases
The speed of sound is normally calculated using the values of a "standard atmospheric day." A "standard atmospheric day" refers to a sea level pressure of 29.92 in-Hg (1013.2 mb) and a temperature of 15°C (59°F). At standard day values, the speed of sound is 761 mph. Other speeds, such as those presented below, use values other than those relating to a "standard atmospheric day." They are not incorrect, they are simply based on values other than a "standard atmospheric day."The speed of sound is 343 m/s or 1126.547 ft/s (768.095 mph) at a temperature of 20°C or 68°F.The speed of sound has nothing to do with the atmospheric pressure at sea level, but the temperature is very important.Scroll down to related links and read the short article "Speed of sound - temperature matters, not air pressure".The air pressure and the air density are proportional to each other at the same temperature.The speed of sound c depends on the temperature of air and not on the air pressure!The humidity of air has some negligible effect on the speed of sound. The air pressureand the density of air (air density) are proportional to each other at the same temperature.It applies always p / ρ = constant. rho is the density ρ and p is the sound pressure.Notice: The speed of sound is alike on a mountain top as well as at sea level with the same air temperature.Google is not correct (look at the following link):http://www.google.com/search?q=speed+of+sound+at+sea+levelHere is the answer of Google: "Speed of sound at sea level = 340.29 m/s".This is no good answer, because they forgot to tell us the temperature,and the atmospheric pressure "at sea level" has no sense.The speed of sound in air is determined by the air itself. It is not dependent upon the sound amplitude, frequency or wavelength.
The speed of sound is normally calculated using the values of a "standard atmospheric day." A "standard atmospheric day" refers to a sea level pressure of 29.92 in-Hg (1013.2 mb) and a temperature of 15°C (59°F). At standard day values, the speed of sound is 761 mph. Other speeds, such as those presented below, use values other than those relating to a "standard atmospheric day." They are not incorrect, they are simply based on values other than a "standard atmospheric day."The speed of sound is 343 m/s or 1126.547 ft/s (768.095 mph) at a temperature of 20°C or 68°F.The speed of sound has nothing to do with the atmospheric pressure at sea level, but the temperature is very important.Scroll down to related links and read the short article "Speed of sound - temperature matters, not air pressure".The air pressure and the air density are proportional to each other at the same temperature.The speed of sound c depends on the temperature of air and not on the air pressure!The humidity of air has some negligible effect on the speed of sound. The air pressureand the density of air (air density) are proportional to each other at the same temperature.It applies always p / ρ = constant. rho is the density ρ and p is the sound pressure.Notice: The speed of sound is alike on a mountain top as well as at sea level with the same air temperature.Google is not correct (look at the following link):http://www.google.com/search?q=speed+of+sound+at+sea+levelHere is the answer of Google: "Speed of sound at sea level = 340.29 m/s".This is no good answer, because they forgot to tell us the temperature,and the atmospheric pressure "at sea level" has no sense.The speed of sound in air is determined by the air itself. It is not dependent upon the sound amplitude, frequency or wavelength.
About 0.213 in air at standard temperature and pressure.
The speed of sound in air at 0 degrees Celsius is approximately 331.5 meters per second. The speed of sound in air is also influenced by factors such as humidity and pressure. At standard atmospheric pressure (1 bar), the speed of sound is around 331 m/s.
what is the speed of sound in ntp
The speed of sound depends on the air factors around it
At 25 Deg C, the speed of sound is 756 MPH. The standard measurement for the "speed of sound" is 20 Deg C, in which sound travels at 768 MPH.
The speed of sound is approximately 343 meters per second (at standard conditions). There is no direct conversion from speed of sound to rpm (revolutions per minute), as rpm is a measure of rotational speed, while the speed of sound is a measure of how quickly sound waves travel through a medium like air.
Speed of sound would increase as the temperature of the air increases Speed of sound increases as humidity of air increases Speed of sound is affected by the density of the air. As density increases velocity of sound decreases
Speed of light in air ~ speed of light in vavuum = 3,00 *10^8 m/s speed of sound in air ~ 330 m/s. Speed of light is faster than sound in air
Between 3200 and 3600 m/s, the closer together the particles are in a substance are, the faster sound can travel through it. This is why these values are much higher than the 343 m/s, the speed of sound in air.
The speed of sound in air is approximately 343 meters per second, while the speed of sound in solids can vary but is generally higher than in air. In solids, sound waves travel faster due to the denser medium and stronger intermolecular bonds.