answersLogoWhite

0

First ionization energy: if you are looking at your periodic table, start from the bottom left corner at Francium in period 7 group 1, then draw a line to helium group 8 period 1. That line represents increasing first ionization energy.

Basically it increases going to the right and increases going up

Think of the positive slope line y=x on a graph starting at the origin (of Fr in this case) going all the way to He.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Natural Sciences

Is it ionization energy is a periodic property?

Ionization energy generally increases across a period as a result of a higher nuclear charge, however there are some exceptions such as Boron which has a lower ionization energy than Beryllium (because it is in a P orbital), and Oxygen which has a lower ionization energy than nitrogen (Because ionization decreases the electron electron repulsion in its orbitals).


What trend does the ionization energy follow going across the periodic table?

The correct answer is: The ionization energy increases because there are more protons to pull on the electrons.


What trends does the first ionization energy follow going across the periodic table?

The correct answer is: The ionization energy increases because there are more protons to pull on the electrons.


Which element in the fifth period has the highest ionization energy?

The element in the fifth period with the highest ionization energy is xenon. Ionization energy generally increases across a period from left to right, so xenon, being on the far right of the period, has the highest ionization energy.


Describe the trends in first ionization energy within groups and across periods in the periodic table Provide examples?

Within a group, first ionization energy generally decreases as you move down the group due to increasing atomic size and shielding effects. Across a period, first ionization energy generally increases due to increasing nuclear charge and effective nuclear charge. For example, within Group 2 (alkaline earth metals), the first ionization energy decreases as you move down the group from Be to Ra. Across Period 3, the first ionization energy increases from Na to Cl.

Related Questions

Is it ionization energy is a periodic property?

Ionization energy generally increases across a period as a result of a higher nuclear charge, however there are some exceptions such as Boron which has a lower ionization energy than Beryllium (because it is in a P orbital), and Oxygen which has a lower ionization energy than nitrogen (Because ionization decreases the electron electron repulsion in its orbitals).


What trend it does the first ionization energy follow going across the periodic table?

The first ionization energy tends to increase across a period from left to right on the periodic table. This is due to the increasing nuclear charge and decreasing atomic radius, which leads to a stronger attraction between the electrons and the nucleus.


What trend does the ionization energy follow going across the periodic table?

The correct answer is: The ionization energy increases because there are more protons to pull on the electrons.


What is the general trend of ionization energy as you go across the periodic table?

Across a period, first ionization energy increases. However, when going down a group, first ionization energy generally decreases. As you go down a group, atoms hove more total electrons so they don't really care that much about their outermost ones.


What trends does the first ionization energy follow going across the periodic table?

The correct answer is: The ionization energy increases because there are more protons to pull on the electrons.


Which element in the fifth period has the highest ionization energy?

The element in the fifth period with the highest ionization energy is xenon. Ionization energy generally increases across a period from left to right, so xenon, being on the far right of the period, has the highest ionization energy.


How can you determine whether ionization energy is a periodic function of atomic number?

Ionization energy is a periodic function of atomic number because it follows periodic trends in the periodic table. As you move across a period from left to right, ionization energy generally increases due to increasing nuclear charge. Similarly, as you move down a group, ionization energy generally decreases due to increasing atomic size. These trends repeat as you move through each period, making ionization energy a periodic function of atomic number.


Describe the trends in first ionization energy within groups and across periods in the periodic table Provide examples?

Within a group, first ionization energy generally decreases as you move down the group due to increasing atomic size and shielding effects. Across a period, first ionization energy generally increases due to increasing nuclear charge and effective nuclear charge. For example, within Group 2 (alkaline earth metals), the first ionization energy decreases as you move down the group from Be to Ra. Across Period 3, the first ionization energy increases from Na to Cl.


What is ionization energy of boron?

Across a row on the periodic table ionization energy increases. Down a column, ionization energy decreases. --------------------------------------------------------- The first Ionization energy of Boron is 800.6 kJ mol-1


What increases as you move right across a period in the periodic table?

Atomic number, ionization energy and electronegativity


How does ionization energy increase as you move across the periodic table?

Ionization energy increases as you move across the periodic table from left to right. This is because the number of protons in the nucleus increases, leading to a stronger attraction between the nucleus and the electrons, making it harder to remove an electron.


What element has the highest ionization energy in group 4 of the periodic table?

Carbon has the highest ionization energy in Group 4 of the periodic table. This is because as you move across a period from left to right, the ionization energy generally increases due to increase in effective nuclear charge. Among the elements in Group 4 (carbon, silicon, germanium, tin, lead), carbon has the highest ionization energy.