The possible values for a 4f sublevel are 14. This means there can be a maximum of 14 electrons in a 4f sublevel.
Electrons occupy orbitals in a definite sequence, filling orbitals with lower energies first. Generally, orbitals in a lower energy level have lower energies than those in a higher energy level. But, in the third level the energy ranges of the principal energy levels begin to overlap. As a result, the 4s sublevel is lower in energy than the 3d sublevel, so it fills first.
Sublevels in an atom are designated by a combination of the principal quantum number (n) and a letter that represents the type of sublevel (s, p, d, or f). For example, the s sublevel is designated as n = 1, the p sublevel as n = 2, the d sublevel as n = 3, and the f sublevel as n = 4.
In the ground state of a chromium atom (atomic number 24), the electron configuration is [Ar] 3d^5 4s^1, with 5 electrons in the 3d sublevel and 1 electron in the 4s sublevel. This configuration is due to the stability achieved by half-filling the 3d sublevel before completely filling the 4s sublevel.
5
The 3d sublevel is not filled until after the 4s sublevel, because the 3d sublevel has more energy than the 4s sublevel, and less energy than the 4p sublevel.
The possible values for a 4f sublevel are 14. This means there can be a maximum of 14 electrons in a 4f sublevel.
Valence electrons occupy higher energy levels first before moving to lower energy levels, according to the aufbau principle. In calcium, the 4s orbital has lower energy than the 3d orbital, so valence electrons fill the 4s orbital first before the 3d orbital.
The correct electron configuration would be 3d5 as each orbital in the 3d sublevel can hold up to 2 electrons, and we have 5 electrons to place in this sublevel.
Electrons occupy orbitals in a definite sequence, filling orbitals with lower energies first. Generally, orbitals in a lower energy level have lower energies than those in a higher energy level. But, in the third level the energy ranges of the principal energy levels begin to overlap. As a result, the 4s sublevel is lower in energy than the 3d sublevel, so it fills first.
B. 1s22s22p63s23p64s23d5----Chromium: [Ar]1s22s22p63s23p63d54s1Manganese: [Ar]1s22s22p63s23p63d54s2
Sublevels in an atom are designated by a combination of the principal quantum number (n) and a letter that represents the type of sublevel (s, p, d, or f). For example, the s sublevel is designated as n = 1, the p sublevel as n = 2, the d sublevel as n = 3, and the f sublevel as n = 4.
5
5
In the ground state of a chromium atom (atomic number 24), the electron configuration is [Ar] 3d^5 4s^1, with 5 electrons in the 3d sublevel and 1 electron in the 4s sublevel. This configuration is due to the stability achieved by half-filling the 3d sublevel before completely filling the 4s sublevel.
1s2 2s2 2p6 3s2 3p6 4s2 3d5
They are both capable of holding a maximum of 10