tRNA
mRNA
There are 64 possible triplets. At least one of the triplets needs to be a stop codon, so theoretically 63 different amino acids can be coded for. In practice, there's some redundancy, and in humans all codons are either stop codons or translate to one of twenty amino acids.
The process of translating mRNA codons into amino acids is carried out by ribosomes in the cell. Transfer RNA (tRNA) molecules bring specific amino acids to the ribosome based on the codons in the mRNA. The ribosome then catalyzes the formation of peptide bonds between the amino acids, forming a polypeptide chain.
Yes, DNA contains codons, which are sequences of three nucleotides that encode for specific amino acids during protein synthesis. These codons are read by ribosomes and transfer RNA molecules to assemble the corresponding amino acids in the correct order to form proteins.
The answer is nine because one codon has 3 letters.Improved AnswerThe above answer is completely incorrect. The question is how many codons are necessary to specify three amino acids, not bases (letters). As my original answer (which was removed by the previouis contributor) pointed out, each amino acid requires one codon to specify it, so the basic answer is, three codons are necessary to specify any three amino acids. However, if the questioner had in mind how many codons are necessary to specify a polypeptide consisting of three amino acids, the answer is five, because, in addition to the three codons necessary for the amino acids, a start codon of AUG (on the mRNA transcript), and one stop codon (UAG, UGA,or UAA on the mRNA transcipt) are also needed. So, in this sense, five codons are needed to specify a polypeptide of 3 amino acids.Improved Answer: The answer is 9. ^ fail XD
The triplet code means that 64 codons translate into only 20 amino acids. The additional 44 codons are not used for anything, but they are rather a redundancy in the code.
mRNA
There are three codons that do not code for any amino acids: the stop codons. These are TAG, TAA, and TGA (in DNA, not RNA).
There are 64 possible triplets. At least one of the triplets needs to be a stop codon, so theoretically 63 different amino acids can be coded for. In practice, there's some redundancy, and in humans all codons are either stop codons or translate to one of twenty amino acids.
codons
There are 61 codons that specify the twenty types of amino acids, since multiple codons can code for the same amino acid due to the redundancy of the genetic code.
The process of translating mRNA codons into amino acids is carried out by ribosomes in the cell. Transfer RNA (tRNA) molecules bring specific amino acids to the ribosome based on the codons in the mRNA. The ribosome then catalyzes the formation of peptide bonds between the amino acids, forming a polypeptide chain.
With only a very few exceptions, the overwhelming majority of organisms share the same genetic code. This is not the same thing as DNA sequence. The genetic code is the relationship between codons in DNA and the 20 amino acids found in proteins.
Amino acids are formed by translating mRNA codons, not directly from DNA. In this DNA sequence, there are no stop codons present. It would be necessary to transcribe this DNA sequence into mRNA and then translate it into amino acids.
Nucleutoides.
anticodon
There are 64 codons (3-base code) that represent 20 amino acids and 3 stop signals. Click on the related link to see a table of DNA codons and the amino acids for which they code.