An electron transport chain couples a chemical reaction between an electron donor (such as NADH) and an electron acceptor (such as O2) to the transfer of H+ ions across a membrane, through a set of mediating biochemical reactions. These H+ ions are used to produce adenosine triphosphate (ATP), the main energy intermediate in living organisms, as they move back across the membrane. Electron transport chains are used for extracting energy from sunlight (photosynthesis) and from redox reactions such as the oxidation of sugars (respiration).
apex: Glycolysis, Krebs cycle, electron transport chain
Electron transport chain. During electron transport chain 34 ATP molecules are produced whereas glycolysis and citric acid cycle yield 4 ATPs (2 during glycolysis and 2 during citric acid cycle).
NAD+ and FAD are electron carriers that function in the Krebs cycle to accept and transport electrons from various reactions within the cycle. They play a crucial role in transferring these electrons to the electron transport chain for ATP production.
Succinate to fumarate
NADH and FADH2 are the main products of the citric acid cycle that are needed for the electron transport chain. These molecules carry high-energy electrons to the electron transport chain, where they donate the electrons to generate ATP through oxidative phosphorylation.
apex: Glycolysis, Krebs cycle, electron transport chain
The electron transport chain uses the high-energy electrons from the Krebs cycle to convert ADP into ATP.
The first stage is the break down of glucose. The second stage is the Krebs Cycle which breaks down the pyruvic acid. The third stage is the electron transport system which occurs in O2 and in the mitochondria.
Electron transport chain Monkey was here @(^o^)@
Electron transport chain. During electron transport chain 34 ATP molecules are produced whereas glycolysis and citric acid cycle yield 4 ATPs (2 during glycolysis and 2 during citric acid cycle).
a light bulb
Most of the NADH that delivers high-energy electrons to the electron transport chain comes from the citric acid cycle (Krebs cycle) during cellular respiration. This cycle generates NADH as a byproduct when converting acetyl-CoA to CO2, which is then used to produce ATP in the electron transport chain.
Yes, the electron transport chain can occur without the Krebs cycle. The electron transport chain generates ATP by transferring electrons through a series of protein complexes in the inner mitochondrial membrane, regardless of whether the electrons come from the Krebs cycle or other sources.
the answer they put is wrong
Actually there are 4 steps of aerobic cellular respiration Glycolysis, Oxidative decarboxylation of pyruvate, kreb's cycle, electrton transport chain
NAD+ and FAD are electron carriers that function in the Krebs cycle to accept and transport electrons from various reactions within the cycle. They play a crucial role in transferring these electrons to the electron transport chain for ATP production.
The three stages of cellular respiration in order are glycolysis, the citric acid cycle (Krebs cycle), and oxidative phosphorylation (electron transport chain). Glycolysis takes place in the cytoplasm, the citric acid cycle occurs in the mitochondria, and oxidative phosphorylation takes place in the inner mitochondrial membrane.