Both have their own DNA, and manufacture their own RNA and proteins. When the DNA was examined, it was resembled the DNA in free-living organsims known as blue-green algae, so it was hypothesized that these organelles were once free-living and then became endosymbionts with another organism.
Prokaryotes
Mitochondria and chloroplasts are thought to have once been a free prokaryotic cell.
concerns the origins of mitochondria and plastids (e.g. chloroplasts), which are organelles of eukaryotic cells. According to this theory, these organelles originated as separate prokaryotic organisms which were taken inside the cell as endosymbionts. Mitochondria developed from proteobacteria (in particular, Rickettsiales or close relatives) and chloroplasts from cyanobacteria. concerns the origins of mitochondria and plastids (e.g. chloroplasts), which are organelles of eukaryotic cells. According to this theory, these organelles originated as separate prokaryotic organisms which were taken inside the cell as endosymbionts. Mitochondria developed from proteobacteria (in particular, Rickettsiales or close relatives) and chloroplasts from cyanobacteria. concerns the origins of mitochondria and plastids (e.g. chloroplasts), which are organelles of eukaryotic cells. According to this theory, these organelles originated as separate prokaryotic organisms which were taken inside the cell as endosymbionts. Mitochondria developed from proteobacteria (in particular, Rickettsiales or close relatives) and chloroplasts from cyanobacteria.
Chloroplasts are organelles found in plant cells that carry out photosynthesis, converting sunlight into energy. Mitochondria are organelles found in animal and plant cells that produce energy through cellular respiration. Both organelles have their own DNA and are thought to have originated as free-living prokaryotic organisms that were engulfed by ancestral eukaryotic cells.
parasitic
Prokaryotes
Mitochondria and chloroplasts are thought to have once been a free prokaryotic cell.
Mitochondria and chloroplasts have their own DNA.
Mitochondria and chloroplasts have their own DNA.
mitochondria and chloroplasts have their own DNA
1)Mitochondria occur in the cells of aerobic organisms with the exception of mammalian RBCs while Chloroplasts occur in the cells of green photosynthetic parts of plants. 2)Mitochondria is colourless while Chloroplasts is green in colour. 3) Mitochondria's shape is rod-like or sausage-shaped while Chloroplasts are generally disc-like in outline. 4) Mitochondria liberate energy while Chloroplasts trap solar energy and convert it into chemical energy. 5) Mitochondria perform oxidation of food while Chloroplasts synthesize food by photosynthesis. 6) Mitochondria consumes O2 and liberate CO2 while Chloroplasts consumes CO2 and liberate O2.
1)Mitochondria occur in the cells of aerobic organisms with the exception of mammalian RBCs while Chloroplasts occur in the cells of green photosynthetic parts of plants. 2)Mitochondria is colourless while Chloroplasts is green in colour. 3) Mitochondria's shape is rod-like or sausage-shaped while Chloroplasts are generally disc-like in outline. 4) Mitochondria liberate energy while Chloroplasts trap solar energy and convert it into chemical energy. 5) Mitochondria perform oxidation of food while Chloroplasts synthesize food by photosynthesis. 6) Mitochondria consumes O2 and liberate CO2 while Chloroplasts consumes CO2 and liberate O2.
1)Mitochondria occur in the cells of aerobic organisms with the exception of mammalian RBCs while Chloroplasts occur in the cells of green photosynthetic parts of plants. 2)Mitochondria is colorless while Chloroplasts is green in color. 3) Mitochondria's shape is rod-like or sausage-shaped while Chloroplasts are generally disc-like in outline. 4) Mitochondria liberate energy while Chloroplasts trap solar energy and convert it into chemical energy. 5) Mitochondria perform oxidation of food while Chloroplasts synthesize food by photosynthesis. 6) Mitochondria consumes O2 and liberate CO2 while Chloroplasts consumes CO2 and liberate O2.
1)Mitochondria occur in the cells of aerobic organisms with the exception of mammalian RBCs while Chloroplasts occur in the cells of green photosynthetic parts of plants. 2)Mitochondria is colourless while Chloroplasts is green in colour. 3) Mitochondria's shape is rod-like or sausage-shaped while Chloroplasts are generally disc-like in outline. 4) Mitochondria liberate energy while Chloroplasts trap solar energy and convert it into chemical energy. 5) Mitochondria perform oxidation of food while Chloroplasts synthesize food by photosynthesis. 6) Mitochondria consumes O2 and liberate CO2 while Chloroplasts consumes CO2 and liberate O2.
Chloroplasts and mitochondria have their own DNA and ribosomes, similar to bacteria. They also reproduce independently within the cell through a process resembling binary fission, just like bacteria. Additionally, both organelles are thought to have originated from endosymbiotic relationships with ancient bacterial cells.
Mitochondria and chloroplasts are the two organelles that contain their own DNA in addition to the nucleus. This DNA is separate from the nuclear DNA and is involved in the organelles' functions, such as energy production in mitochondria and photosynthesis in chloroplasts.
concerns the origins of mitochondria and plastids (e.g. chloroplasts), which are organelles of eukaryotic cells. According to this theory, these organelles originated as separate prokaryotic organisms which were taken inside the cell as endosymbionts. Mitochondria developed from proteobacteria (in particular, Rickettsiales or close relatives) and chloroplasts from cyanobacteria. concerns the origins of mitochondria and plastids (e.g. chloroplasts), which are organelles of eukaryotic cells. According to this theory, these organelles originated as separate prokaryotic organisms which were taken inside the cell as endosymbionts. Mitochondria developed from proteobacteria (in particular, Rickettsiales or close relatives) and chloroplasts from cyanobacteria. concerns the origins of mitochondria and plastids (e.g. chloroplasts), which are organelles of eukaryotic cells. According to this theory, these organelles originated as separate prokaryotic organisms which were taken inside the cell as endosymbionts. Mitochondria developed from proteobacteria (in particular, Rickettsiales or close relatives) and chloroplasts from cyanobacteria.