Allele frequency is stable
Allele frequency is stable The phenotype frequency does not change.
No disruptive circumstances must be present in random mating in a population for Hardy-Weinberg equilibrium to occur. Mating must happen randomly. No allele can give an advantage
an equilibrium point at which, if either population changes, the population sizes will diverge from, rather than return to, the equilibrium point; a combination of population sizes at which the two populations could coexist, but when the combination changed, no impetus exists to return to the equilibrium population sizes.
The genetic equilibrium of a population can be disturbed by mutation, gene flow, genetic drift, and natural selection.
Migration can introduce new genes into a population and increase genetic diversity, thus potentially disrupting the genetic equilibrium. If individuals from a different population arrive and interbreed with the local population, they can alter allele frequencies and introduce new variations. Over time, this can impact the gene pool and change the genetic equilibrium of the population.
Allele frequency is stable The phenotype frequency does not change.
No disruptive circumstances must be present in random mating in a population for Hardy-Weinberg equilibrium to occur. Mating must happen randomly. No allele can give an advantage
No disruptive circumstances must be present in random mating in a population for Hardy-Weinberg equilibrium to occur. Mating must happen randomly. No allele can give an advantage
an equilibrium point at which, if either population changes, the population sizes will diverge from, rather than return to, the equilibrium point; a combination of population sizes at which the two populations could coexist, but when the combination changed, no impetus exists to return to the equilibrium population sizes.
the equilibrium constant would change
the equilibrium constant would change
mating must happen randomly
In a non-equilibrium population, the number of generations needed for random mating to reach equilibrium depends on various factors such as population size, selection pressure, genetic diversity, and mutation rate. It can range from a few generations to many generations, and sometimes equilibrium may not be reached due to ongoing evolutionary forces.
A large population residing on an isolated island is more likely to reach Hardy-Weinberg equilibrium.
The genetic equilibrium of a population can be disturbed by mutation, gene flow, genetic drift, and natural selection.
It is true.
Migration can introduce new genes into a population and increase genetic diversity, thus potentially disrupting the genetic equilibrium. If individuals from a different population arrive and interbreed with the local population, they can alter allele frequencies and introduce new variations. Over time, this can impact the gene pool and change the genetic equilibrium of the population.