During fission of uranium-235 with thermal neutrons the atom is splitted and many fission products are obtained.
In a nuclear fission reaction, a freely moving neutron undergoes neutron capture and initiates the nuclear fission of a fuel atom.
a neutron is absorbed by an atom’s nucleus. (apex)
The fission cross section in a nuclear reactor is a measure of the probability that a neutron will induce fission in a particular nucleus. It is a crucial parameter for determining the neutron flux and reaction rates within the reactor core. Different isotopes have different fission cross sections depending on their ability to undergo fission when struck by a neutron.
all you need in nuclear fission is a large element (235Uranium) and a neutron, the neutron goes into the Uranium causeing it to split into smaller parts grapes.
If things go according to plan, the neutron encounters a fissionable atomic nucleus and then undergoes what is called neutron capture. That's the next step in the process. The presence of that neutron in the nucleus destabilizes the nucleus (more than it already is as that nucleus is radioactive and unstable anyway). In an extremely short period of time the instability results in nuclear fission. The nucleus splits.
One of the particles released during the fission of uranium-235 is a neutron. When uranium-235 undergoes fission, it splits into two smaller atoms along with several neutrons. These neutrons can then go on to initiate additional fission reactions in a chain reaction.
A neutron is absorbed by an atoms nucleus
In a nuclear fission reaction, a freely moving neutron undergoes neutron capture and initiates the nuclear fission of a fuel atom.
a neutron is absorbed by an atom’s nucleus. (apex)
The bullet that starts a fission reaction is a neutron. When a neutron collides with the nucleus of a fissile isotope, such as uranium-235, it can induce the nucleus to undergo fission, releasing more neutrons and a large amount of energy.
The fission cross section in a nuclear reactor is a measure of the probability that a neutron will induce fission in a particular nucleus. It is a crucial parameter for determining the neutron flux and reaction rates within the reactor core. Different isotopes have different fission cross sections depending on their ability to undergo fission when struck by a neutron.
all you need in nuclear fission is a large element (235Uranium) and a neutron, the neutron goes into the Uranium causeing it to split into smaller parts grapes.
If things go according to plan, the neutron encounters a fissionable atomic nucleus and then undergoes what is called neutron capture. That's the next step in the process. The presence of that neutron in the nucleus destabilizes the nucleus (more than it already is as that nucleus is radioactive and unstable anyway). In an extremely short period of time the instability results in nuclear fission. The nucleus splits.
A neutron is the particle required to continue the chain process of Uranium fission. When a Uranium-235 nucleus absorbs a neutron, it becomes unstable and splits into two smaller nuclei, releasing energy and additional neutrons that can then go on to induce further fission reactions in nearby nuclei.
When uranium-235 is bombarded with a neutron, it may undergo a fission reaction, resulting in the formation of multiple fission products, which may include different numbers of neutrons depending on the specific reaction that takes place. Typically, fission of uranium-235 produces around 2 to 3 neutrons per fission event.
We might think of induced nuclear fission as a fission reaction that occurs when a neutron is captured by, say, a uranium-235 atom and that atomic nucleus undergoes fission as a result. Most all of the fission events within a nuclear reactor or nuclear weapon are induced. Given this, we might then compare that fission event to a spontaneous fission event wherein the atomic nucleus of a uranium-235 atom spontaneously undergoes fission without having captured a neutron.
starting the fission neutron chain reaction using some kind of pulsed neutron source.