A (small) amount of mass is "converted" into energy.
If you fuse light elements into heavier ones (particulally hydrogen into helium),
you end up with less mass than you started with.
Likewise breaking apart heavy elements into lighter ones result in a "loss" of mass.
Note - iron is the low point of all of this,
thus you can fuse up to iron OR fission down to iron - but no farther.
I currently use nuclear fusion.
Nuclear fusion doesn't produce energy.
The two processes that produce nuclear changes are nuclear fusion and nuclear fission. Nuclear fusion involves combining two atomic nuclei to form a heavier nucleus, while nuclear fission involves splitting a heavy nucleus into smaller ones. Both processes release a large amount of energy.
Nuclear processes that can release large amounts of energy.
1. Unlike fission, during fusion tremendous amount of energy is liberated. Hence fusion of a very small mass generates large amount of energy. 2. Unlike fission the products of fusion reactions are not radio-active. Thus they are harmless and can be replaced easily. 3. Highly penetrating radiations are liberated during fission, which are highly hazardous.
fission and/or fusion
During nuclear fission and fusion, matter that seems to disappear is actually converted into energy.
I currently use nuclear fusion.
Definition: energy from nuclear fission or fusion: the energy released by nuclear fission or fusion
Nuclear fusion
The antonym of nuclear fusion is nuclear fission. Nuclear fusion is the process of combining atomic nuclei to form a heavier nucleus, while nuclear fission is the process of splitting a heavy atomic nucleus into smaller nuclei.
No Strontium is produced by nuclear fission not fusion.
nuclear fission and nuclear fusion
Nuclear fusion doesn't produce energy.
The two processes that produce nuclear changes are nuclear fusion and nuclear fission. Nuclear fusion involves combining two atomic nuclei to form a heavier nucleus, while nuclear fission involves splitting a heavy nucleus into smaller ones. Both processes release a large amount of energy.
The two types of nuclear energy are nuclear fission nuclear fusion. In nuclear fission, the nuclei of the atoms are split. In nuclear fusion, as the name suggests, the nuclei of the atoms are joined together.
Energy from nuclear fusion is around 400 times more than that of nuclear fission for same mass.