An Animal Cell in hypertonic solution will look shriveled due to osmotic effects on the cell.
the hypertonic solution means there is more water potential outside of the cell, water moves from a low water potential to a high water potential. Therefore the water diffuses out of the cell decreasing the volume bringing the cell membrane in making it look shriveled up.
In an isotonic solution the cell would be unchanged. In a hypertonic solution water would flow out of the cell and it would shrink. In a hypotonic solution water would flow into the cell and it would expand like a balloon and possibly rupture.
In isotonic solution nothing ail happen. In hypertonic solution fluid will leave the cell to dilute the external fluid, causing the cell to crenate. In Hypotonic solution fluid will move into the cell to dilute the contents of the cell, causing it to bust or haemolyse.
When placed in an isotonic solution (i.e. a solution where the concentration of water molecules is roughly equal to the that within cells), there is equal diffusion of water into and out of the cells. Therefore, the cells find this environment suitable. In a hypotonic solution (i.e. a solution where the concentration of water molecules is much more than that within cells) water diffuses into cells as a result of which the cells swell. Excessive swelling causes the cells to burst, a phenomenon called cell lysis In a hypertonic solution (i.e. a solution where the concentration of water molecules is lesser than that within cells) water moved out from within cells to the surrounding medium. As a result of this, cells shrink.
Isotonic contractions. This happens when the muscle shortens as it contracts
This is not true. An isotonic solution is one that is equivalent in concentration to that found within human plasma so that is usually desirable. On the other hand, a person may have too little of an ion. In that case the amount needs to be replaced using a hypertonic solution. The trouble with that is that if the patient is not carefully monitored, too much of whatever ion is used will enter the cells, causing the cells to draw more water in to maintain balance. When that happens, especially with sodium, the patient must be monitored closely because giving too much can cause the sodium level in the cells to exceed normal levels. When that happens, the cells draw more water in which can cause the cells to swell and then the membranes to begin to leak such as we see with pulmonary edema.
isotonic and hypotonic
In an isotonic solution the cell would be unchanged. In a hypertonic solution water would flow out of the cell and it would shrink. In a hypotonic solution water would flow into the cell and it would expand like a balloon and possibly rupture.
the plasma membranes water flows at an equal rate. animal cells function the best in an isotonic environment. in an isotonic environment the blood cells stay normal and do not get lyced (which happens in hypotonic environments) and they do not shrivel (which happens in hypertonic environments).
A hypertonic solution is one containing more solute, a hypotonic solution contains more water, and an isotonic solution contains equal amounts of solute and water. Whether a solution is hypertonic, hypotonic, or isotonic can determine what happens to the cell. In a hypertonic solution, solute will diffuse into the cell down the concentration gradient. In a hypotonic solution, water will move into the cell by osmosis down a water potential gradient, and in an isotonic solution nothing will happen because the concentration and water potential are the same both inside and outside the cell.
They diffuse into one another until the point where they reach equilibrium. This point, however cannot be predicted from what you gave nor is it any more likely to be in favor of the hypertonic, the hypotonic, or your idea of isotonic.
In a hypertonic solution, the cell wall will shrink away from the cell membrane due to water leaving the cell. In an isotonic solution, the cell wall maintains its shape as water moves in and out of the cell in equilibrium. In a hypotonic solution, the cell wall will swell as water moves into the cell, increasing the pressure inside the cell.
the cell lets out water to make it an isotonic solution
In isotonic solution nothing ail happen. In hypertonic solution fluid will leave the cell to dilute the external fluid, causing the cell to crenate. In Hypotonic solution fluid will move into the cell to dilute the contents of the cell, causing it to bust or haemolyse.
If a cell is placed in an isotonic solution, there will be no net movement of water across the cell membrane. The concentration of solutes inside and outside the cell will be equal, so the cell will maintain its normal shape and size as there is no osmotic pressure acting on it.
When placed in an isotonic solution (i.e. a solution where the concentration of water molecules is roughly equal to the that within cells), there is equal diffusion of water into and out of the cells. Therefore, the cells find this environment suitable. In a hypotonic solution (i.e. a solution where the concentration of water molecules is much more than that within cells) water diffuses into cells as a result of which the cells swell. Excessive swelling causes the cells to burst, a phenomenon called cell lysis In a hypertonic solution (i.e. a solution where the concentration of water molecules is lesser than that within cells) water moved out from within cells to the surrounding medium. As a result of this, cells shrink.
When placed in a hypertonic solution, an amoeba will lose water to the surrounding environment through osmosis. This loss of water causes the cell to shrink and may eventually lead to dehydration and cell death if the solution is highly concentrated.
When a red blood cell is exposed to an isotonic solution, there is no net movement of water into or out of the cell. This means that the cell maintains its normal shape and volume, as the concentration of solutes inside and outside the cell is balanced.