The electron transport chain entails oxidization of NADH and [FADH2] produced during glycolysis, β-oxidation, and other catabolic processes
The series of electron acceptors in the thylakoid membrane is known as the electron transport chain. As electrons move through the chain, they lose energy, which is used to pump protons across the membrane, creating a proton gradient. This gradient is then used by ATP synthase to produce ATP through a process known as chemiosmosis.
Energy is transferred to the chain of proteins in the electron transport. A electron transport chain is a series of compounds that transfer electrons from electron donors to electron acceptors through redox reactions.
IN electron transport chain, NaDH2 and FaDH2 get reduced to give electrons. NaDH2--->DH2+ + 2e- FaDh2---->DH2+ + 2e-
During photosynthesis, NADPH and ATP are recycled through the light-dependent reactions. NADPH is regenerated through the reduction of NADP+ by electrons from water in the electron transport chain. ATP is regenerated through the phosphorylation of ADP using energy from electron transport chain.
During electron transport in the mitochondrion, protons (H+) accumulate in the intermembrane space. This happens as electrons are transferred through the electron transport chain, creating a proton gradient across the inner mitochondrial membrane. This gradient of protons is later utilized by ATP synthase to generate ATP through oxidative phosphorylation.
they move through an electron transport chain to photosystem 1
in this step the energy carried by electrons is used to synthesize (ATP). In electron transport chain NADH and FADH2 realese electrons and hydrogen ions. These electrons are taken up by a series of electron carriers. When electrons move through the series of electron carriers they lose electrons and hydrogen ions combine with moleculaer oxygen to form water.
The series of electron acceptors in the thylakoid membrane is known as the electron transport chain. As electrons move through the chain, they lose energy, which is used to pump protons across the membrane, creating a proton gradient. This gradient is then used by ATP synthase to produce ATP through a process known as chemiosmosis.
Energy is transferred to the chain of proteins in the electron transport. A electron transport chain is a series of compounds that transfer electrons from electron donors to electron acceptors through redox reactions.
Electron transport chain!!
Electron transport chain!!
Electron transport chain!!
IN electron transport chain, NaDH2 and FaDH2 get reduced to give electrons. NaDH2--->DH2+ + 2e- FaDh2---->DH2+ + 2e-
During photosynthesis, NADPH and ATP are recycled through the light-dependent reactions. NADPH is regenerated through the reduction of NADP+ by electrons from water in the electron transport chain. ATP is regenerated through the phosphorylation of ADP using energy from electron transport chain.
After sunlight hits Photosystem II, it energizes the electrons in the chlorophyll molecules. The energized electrons are then passed through an electron transport chain, generating ATP and NADPH molecules through the process of photophosphorylation.
During electron transport in the mitochondrion, protons (H+) accumulate in the intermembrane space. This happens as electrons are transferred through the electron transport chain, creating a proton gradient across the inner mitochondrial membrane. This gradient of protons is later utilized by ATP synthase to generate ATP through oxidative phosphorylation.
Molecules that donate electrons to the electron transport chain include NADH and FADH2, which are produced during glycolysis and the citric acid cycle. These molecules transfer their electrons to protein complexes in the electron transport chain, ultimately leading to the production of ATP through oxidative phosphorylation.