When aluminum sulfate reacts with strontium hydroxide, aluminum hydroxide and strontium sulfate are formed as products in a double displacement reaction. Aluminum hydroxide is insoluble in water and will precipitate out of the solution, while strontium sulfate will also be a precipitate since it is insoluble in water.
When ammonia hydroxide solution is added to aluminum ammonium sulfate, it can lead to the formation of aluminum hydroxide, a precipitate, due to the reaction between the aluminum ions and the hydroxide ions from the ammonia. This process decreases the solubility of aluminum ions in the solution. Additionally, the increase in pH from the ammonia hydroxide can affect the stability of the aluminum ammonium sulfate complex, potentially resulting in further chemical changes.
The exchange reaction between sulfuric acid (H2SO4) and strontium hydroxide (Sr(OH)2) results in the formation of strontium sulfate (SrSO4) and water (H2O). This reaction can be represented by the chemical equation: H2SO4 + Sr(OH)2 → SrSO4 + 2H2O. In this reaction, the hydrogen ions (H+) from sulfuric acid combine with the hydroxide ions (OH-) from strontium hydroxide to form water, while the strontium ions (Sr2+) from strontium hydroxide combine with the sulfate ions (SO4 2-) from sulfuric acid to form strontium sulfate.
When strontium chloride and sodium sulfate are mixed, a double displacement reaction occurs. The strontium cations (Sr2+) combine with sulfate anions (SO4 2-) to form strontium sulfate (SrSO4), which is insoluble and precipitates out of the solution as a solid. Sodium cations (Na+) combine with chloride anions (Cl-) to form sodium chloride (NaCl), which remains dissolved in the solution.
Yes, a precipitation reaction occurs when potassium sulfate and strontium iodide are mixed. Potassium sulfate and strontium iodide react to form strontium sulfate, which is insoluble in water, leading to its precipitation as a solid.
The compound with the formula SrSO4 is called strontium sulfate. It is composed of one strontium (Sr) atom and one sulfate (SO4) ion.
The word equation for aluminum sulfate is: aluminum sulfate + water → aluminum hydroxide + sulfuric acid.
When Epsom salt (magnesium sulfate) is mixed with aluminum sulfate, a double displacement reaction occurs. The magnesium ions from Epsom salt switch places with the aluminum ions from aluminum sulfate, forming magnesium sulfate and aluminum hydroxide. This reaction results in a white precipitate of aluminum hydroxide forming in the solution, while magnesium sulfate remains dissolved.
it forms a white precipitate ; Al(OH)3 and ammonium sulfate with additional excess NH4OH,still white ppt wont dissolve this means Aluminum dont make a complex with ammonia
When ammonia hydroxide solution is added to aluminum ammonium sulfate, it can lead to the formation of aluminum hydroxide, a precipitate, due to the reaction between the aluminum ions and the hydroxide ions from the ammonia. This process decreases the solubility of aluminum ions in the solution. Additionally, the increase in pH from the ammonia hydroxide can affect the stability of the aluminum ammonium sulfate complex, potentially resulting in further chemical changes.
The exchange reaction between sulfuric acid (H2SO4) and strontium hydroxide (Sr(OH)2) results in the formation of strontium sulfate (SrSO4) and water (H2O). This reaction can be represented by the chemical equation: H2SO4 + Sr(OH)2 → SrSO4 + 2H2O. In this reaction, the hydrogen ions (H+) from sulfuric acid combine with the hydroxide ions (OH-) from strontium hydroxide to form water, while the strontium ions (Sr2+) from strontium hydroxide combine with the sulfate ions (SO4 2-) from sulfuric acid to form strontium sulfate.
When aluminum sulfate reacts with water, it forms aluminum hydroxide and sulfuric acid. This reaction is exothermic, meaning it releases heat.
The net ionic equation for aluminum sulfate and sodium hydroxide is Al^3+ + 3OH^- -> Al(OH)3(s). This represents the formation of solid aluminum hydroxide as a precipitate.
Strontium bromide and potassium sulfate will produce a precipitate of strontium sulfate.
The chemical equation for the reaction between aluminum sulfate and calcium hydroxide is: Al2(SO4)3 + 3Ca(OH)2 -> 3CaSO4 + 2Al(OH)3
The reaction equation for hydrogen sulfate (H2SO4) and aluminum hydroxide (Al(OH)3) is: 2Al(OH)3 + 3H2SO4 → Al2(SO4)3 + 6H2O
Aluminum sulfate is made up of aluminum ions (Al3+) and sulfate ions (SO4 2-). It is a white crystalline solid that is typically produced by treating aluminum hydroxide with sulfuric acid.
nothing