A dense core of neutrons that remains after a supernova is known as a neutron star. It forms when the core of a massive star collapses under gravity after exhausting its nuclear fuel, causing the protons and electrons to combine into neutrons. Neutron stars are incredibly dense, with a mass greater than that of the sun compressed into a sphere only about 20 kilometers in diameter. They often exhibit strong magnetic fields and can rotate rapidly, leading to the emission of beams of radiation that may be detected as pulsars.
The remains of a star after a supernova can be classified primarily as either a neutron star or a black hole, depending on the mass of the original star. If the core's mass is below a certain threshold, it may collapse into a neutron star, which is incredibly dense and composed mostly of neutrons. If the core's mass exceeds this limit, it may collapse further into a black hole, where gravity is so strong that not even light can escape. Additionally, the explosion disperses the outer layers of the star into space, creating a supernova remnant.
A collapsed core of a supernova that only contains neutrons is called a neutron star. Neutron stars are very dense, with a mass greater than the sun but compressed into a sphere only about 12 miles in diameter. They are supported by neutron degeneracy pressure, which prevents further collapse.
A supernova happens when most of the core of the collapsing star has become neutrons, held up against gravity by neutron degeneracy pressure. At this point a shockwave reflects from the neutron star surface, driving the supernova explosion.So the answer to your question is neutrons.
After a supernova, the stellar core may remain as a neutron star or, for more massive stars, collapse into a black hole. Neutron stars are extremely dense, composed almost entirely of neutrons, while black holes have such strong gravity that not even light can escape from them.
Yes, the very small, dense remnant of a supernova explosion is known as a neutron star, which is primarily composed of neutrons. These stars form when the core of a massive star collapses under gravity during a supernova event, leading to an incredibly dense object with a mass greater than that of the Sun but a radius of only about 10 kilometers. The extreme density means that a sugar-cube-sized amount of neutron star material would weigh millions of tons on Earth.
The remains of a star after a supernova can be classified primarily as either a neutron star or a black hole, depending on the mass of the original star. If the core's mass is below a certain threshold, it may collapse into a neutron star, which is incredibly dense and composed mostly of neutrons. If the core's mass exceeds this limit, it may collapse further into a black hole, where gravity is so strong that not even light can escape. Additionally, the explosion disperses the outer layers of the star into space, creating a supernova remnant.
A collapsed core of a supernova that only contains neutrons is called a neutron star. Neutron stars are very dense, with a mass greater than the sun but compressed into a sphere only about 12 miles in diameter. They are supported by neutron degeneracy pressure, which prevents further collapse.
A supernova happens when most of the core of the collapsing star has become neutrons, held up against gravity by neutron degeneracy pressure. At this point a shockwave reflects from the neutron star surface, driving the supernova explosion.So the answer to your question is neutrons.
After a supernova, the stellar core may remain as a neutron star or, for more massive stars, collapse into a black hole. Neutron stars are extremely dense, composed almost entirely of neutrons, while black holes have such strong gravity that not even light can escape from them.
The core of a star left over from a supernova explosion is called a neutron star. Neutron stars are incredibly dense, composed mostly of neutrons, and have strong gravitational and magnetic fields. They can be very small in size but contain a mass greater than that of our Sun.
If the core of a supernova contains about one solar mass, it will likely become a neutron star. This dense remnant forms when the core collapses under gravity, causing protons and electrons to combine into neutrons. Neutron stars are incredibly dense, with a mass greater than the Sun compressed into a sphere only about 20 kilometers in diameter. If the core exceeds around three solar masses, it may collapse further into a black hole.
A Neutron Star
Yes, the very small, dense remnant of a supernova explosion is known as a neutron star, which is primarily composed of neutrons. These stars form when the core of a massive star collapses under gravity during a supernova event, leading to an incredibly dense object with a mass greater than that of the Sun but a radius of only about 10 kilometers. The extreme density means that a sugar-cube-sized amount of neutron star material would weigh millions of tons on Earth.
Neutron star: A dense remnant composed primarily of neutrons formed from the collapsing core of a massive star during a supernova explosion. Black hole: A region of spacetime where gravity is so strong that nothing, not even light, can escape, formed when the core of a massive star collapses during a supernova. Heavy elements: Elements with atomic numbers higher than iron, such as gold, uranium, and platinum, are created during the intense temperatures and pressures of a supernova explosion.
A neutron star is created when a massive star collapses under its own gravity during a supernova explosion. The intense pressure and heat cause protons and electrons to combine, forming neutrons. This results in a dense core of neutrons, which is the neutron star.
Neutron stars are formed when a massive star runs out of fuel and collapses under its own gravity during a supernova explosion. The key processes involved in their creation include the core collapse of the star, the expulsion of outer layers in a supernova explosion, and the compression of the core into a dense ball of neutrons.
When a star explodes and destroys itself, leaving only a dense core behind, it is called a Supernova. The only other option is when a star goes nova, where only the outer body of the star explodes, but the stellar remnant remains in place.