There are many compounds with a relative mass of 72.Eg. pentane (C5H12), methyl butane (CH3)-(C4H9), dimethyl propane (CH3)2-(C3H6). Inorganic formula's can not easily be guessed, but undoubtly be found.Only one (isotope of an) element has the relative mass of 72: Gallium, (Ga-72), but this is not a natural, stable isotope. Gallium has not a molecular formula (being a metal like aluminum) only an atomic symbol: Ga.
Oxygen is a non meta element. Atomic mass of it is 16.
Relative atomic mass is determined by comparing the mass of an atom to one-twelfth of the mass of a carbon-12 atom, which is defined as exactly 12 atomic mass units (amu). To find it, you can use a mass spectrometer to measure the isotopic masses and their relative abundances, then calculate a weighted average based on these values. The formula used is: relative atomic mass = (isotopic mass × relative abundance) / total relative abundance for all isotopes. This gives a value that reflects the average mass of an atom of an element as found in nature.
To calculate the relative formula mass of sulfur dioxide (SO₂), you need to sum the atomic masses of its constituent elements. Sulfur (S) has an atomic mass of approximately 32.07 g/mol, and oxygen (O) has an atomic mass of about 16.00 g/mol. Since SO₂ contains one sulfur atom and two oxygen atoms, the calculation is: 32.07 + (2 × 16.00) = 32.07 + 32.00 = 64.07 g/mol. Therefore, the relative formula mass of SO₂ is approximately 64.07 g/mol.
No, subscripts in a chemical formula represent the number of atoms of each element in the compound. The relative mass of each atom is accounted for by the atomic mass of the element found in the periodic table. So, atomic mass, not subscripts, gives you the relative mass of each type of atom in a compound.
The relative formula mass of iodine is 253.8 g/mol.
The relative atomic mass of copper is approximately 63.55. To calculate the relative formula mass of copper, you sum the atomic masses of its atoms, which in this case would just be the atomic mass of copper. Therefore, the relative formula mass of copper would be 63.55.
The relative formula mass of ethanol (C2H5OH) is 46 g/mol.
The chemical formula is (NO3)-; the mass is 62 g.
The relative formula mass of a hydrogen molecule (H2) is calculated by adding the atomic masses of the two hydrogen atoms. Each hydrogen atom has an atomic mass of approximately 1, so the relative formula mass of a hydrogen molecule is 2.
The relative formula mass of lead oxide (PbO) is calculated by adding the atomic masses of the elements in the formula. The atomic mass of lead (Pb) is 207.2 g/mol, and the atomic mass of oxygen (O) is 16.0 g/mol. Therefore, the relative formula mass of lead oxide is 207.2 + 16.0 = 223.2 g/mol.
The relative formula mass of a molecule of hydrgoen is two (2 x 1).
The relative formula mass of MgCO3 is 84.3 g/mol. This is calculated by adding the atomic masses of magnesium (24.3 g/mol), carbon (12.0 g/mol), and three oxygen atoms (16.0 g/mol each) together.
Benzene has a chemical formula of C6H6 This has a molar mass of 78. So one mole has a mass of 78 grams
The relative formula mass of potassium dichromate (K2Cr2O7) is calculated by adding the atomic masses of its individual elements. The atomic masses of potassium (K), chromium (Cr), and oxygen (O) are 39.1, 52, and 16 respectively. Therefore, the relative formula mass of potassium dichromate is 294.2 g/mol.
The anhydrous copper sulfate (CuSO4) has a molar mass of 159,62.
There are many compounds with a relative mass of 72.Eg. pentane (C5H12), methyl butane (CH3)-(C4H9), dimethyl propane (CH3)2-(C3H6). Inorganic formula's can not easily be guessed, but undoubtly be found.Only one (isotope of an) element has the relative mass of 72: Gallium, (Ga-72), but this is not a natural, stable isotope. Gallium has not a molecular formula (being a metal like aluminum) only an atomic symbol: Ga.