Negative enthalpy refers to a situation in which a process or reaction releases energy, typically in the form of heat, to its surroundings. This indicates that the enthalpy change (ΔH) for the reaction is less than zero, signifying an exothermic process. In practical terms, reactions with negative enthalpy contribute to an increase in the temperature of their environment, often making them spontaneous under certain conditions.
Negtive
If you plot the reaction coordinate (what I think you mean by "enthalpy change diagram"), the reaction will be exothermic if the products are lower on the graph than the reactants. If they are higher than it is endothermic. For instance, if you go to the linked Wikipedia page (link to the left of this answer), the graph shown is of an exothermic reaction.
The changes in enthalpy, entropy, and free energy are negative for the freezing of water since energy is released as heat during the process. At lower temperatures, the freezing of water is more spontaneous as the negative change in enthalpy dominates over the positive change in entropy, making the overall change in free energy negative and leading to a spontaneous process.
When enthalpy in a system decreases, the reaction is considered to be exothermic. In an exothermic reaction, heat is released to the surroundings, leading to a decrease in the internal energy of the system. This change in enthalpy is typically indicated by a negative value for the change in enthalpy (ΔH).
If a reaction has a negative enthalpy change (ΔH < 0), it indicates that the reaction releases heat to the surroundings, making it exothermic. This typically means that the products of the reaction have lower energy than the reactants. Additionally, a negative enthalpy change often suggests that the reaction is more favorable and can occur spontaneously under certain conditions, although spontaneity also depends on entropy changes and temperature.
A negative enthalpy of formation indicates that energy is evolved.
No, the enthalpy of formation can be positive, negative, or zero, depending on the specific chemical reaction and the substances involved.
A negative enthalpy in a chemical reaction indicates that the reaction is exothermic, meaning it releases heat energy to the surroundings.
Negtive
For a spontaneous reaction, the overall change in enthalpy should be negative (exothermic). This means that the products have a lower enthalpy than the reactants, releasing energy in the form of heat.
If you plot the reaction coordinate (what I think you mean by "enthalpy change diagram"), the reaction will be exothermic if the products are lower on the graph than the reactants. If they are higher than it is endothermic. For instance, if you go to the linked Wikipedia page (link to the left of this answer), the graph shown is of an exothermic reaction.
The reaction is exothermic, meaning it releases heat. The enthalpy of the reaction is negative, indicating that it is exothermic.
Yes, it is possible for the change in enthalpy (H) to have a negative value in a chemical reaction, indicating that the reaction releases heat energy.
The changes in enthalpy, entropy, and free energy are negative for the freezing of water since energy is released as heat during the process. At lower temperatures, the freezing of water is more spontaneous as the negative change in enthalpy dominates over the positive change in entropy, making the overall change in free energy negative and leading to a spontaneous process.
Electron affinity is the energy released when an atom gains an electron to form a negative ion, while electron gain enthalpy is the enthalpy change accompanying the addition of an electron to a gaseous atom. Electron affinity is a specific term used in the context of forming an ion, while electron gain enthalpy is a general term for the enthalpy change associated with gaining an electron.
For delta G to become negative at a given enthalpy and entropy, the process must be spontaneous. This can happen when the increase in entropy is large enough to overcome the positive enthalpy, leading to a negative overall Gibbs free energy. This typically occurs at higher temperatures where entropy effects dominate.
When enthalpy in a system decreases, the reaction is considered to be exothermic. In an exothermic reaction, heat is released to the surroundings, leading to a decrease in the internal energy of the system. This change in enthalpy is typically indicated by a negative value for the change in enthalpy (ΔH).