Intermolecular forces are any forces exerted on neighboring molecules of a given compound. The forces are not the actual chemical bonds present in the substance, but rather the substances own attractiveness to its own molecules. These intermolecular forces play a crucial role in determining a compounds various physical properties such as but not limited to :solubility, melting point, boiling point, density.
Boiling point is a property not a force; but a high boiling point indicate a strong intermolecular force.
Intermolecular attraction
The intermolecular force in Ar (argon) is London dispersion forces, which are the weakest type of intermolecular force. This force is caused by temporary fluctuations in electron distribution around the atom, leading to temporary dipoles.
Metallic bonding
No. A covalent bond acts solely within a molecule.An intermolecular force acts between two or more separate molecules
intermolecular force
This is an intermolecular force.
Gravity!
Boiling point is a property not a force; but a high boiling point indicate a strong intermolecular force.
Intermolecular attraction
The intermolecular force in Ar (argon) is London dispersion forces, which are the weakest type of intermolecular force. This force is caused by temporary fluctuations in electron distribution around the atom, leading to temporary dipoles.
Intramolecular forces are not intermolecular forces !
The intermolecular force in BF3 is London dispersion forces. This is because BF3 is a nonpolar molecule, so the only intermolecular force it experiences is the temporary weak attraction between temporary dipoles.
Intermolecular forces shown by the dotted lines not by strong covalent bonds.
Hydrogen bonds
The strongest intermolecular force present in hydrogen bromide (HBr) is dipole-dipole interaction.
In the case of a covalent bond, the intramolecular force is stronger than the intermolecular force. The covalent bond holds atoms together within a molecule, while intermolecular forces are weaker interactions between molecules.